Math, asked by Lordritesh, 1 year ago

If x = √p+2q+√p-2q/√p+2q-√p-2q then show that qx2 -px+q=0

Answers

Answered by chunu2
61
Please click brainliest and thanks If u liked
Attachments:

Lordritesh: bro u r genius
Answered by ashishks1912
44

From given x=\frac{\sqrt{p+2q}+\sqrt{p-2q}}{\sqrt{p+2q}-\sqrt{p-2q}} we have proved that qx^2-px+q=0

Step-by-step explanation:

  • Given that x=\frac{\sqrt{p+2q}+\sqrt{p-2q}}{\sqrt{p+2q}-\sqrt{p-2q}}
  • To prove that qx^2-px+q=0
  • x=\frac{\sqrt{p+2q}+\sqrt{p-2q}}{\sqrt{p+2q}-\sqrt{p-2q}}
  • Multiply and dividing by the conjugate \sqrt{p+2q}+\sqrt{p-2q} we get
  • x=\frac{\sqrt{p+2q}+\sqrt{p-2q}}{\sqrt{p+2q}-\sqrt{p-2q}}\times \frac{\sqrt{p+2q}+\sqrt{p-2q}}{\sqrt{p+2q}+\sqrt{p-2q}}
  • x=\frac{(\sqrt{p+2q}+\sqrt{p-2q})^2}{\sqrt{p+2q}^2-\sqrt{p-2q}^2} ( using the properties (a+b)^2=a^2+b^2+2ab and  (a-b)(a+b)=a^2-b^2 )
  • x=\frac{\sqrt{p+2q}^2+\sqrt{p-2q}^2+2\sqrt{p+2q}\sqrt{p-2q}}{p+2q-(p-2q)}
  • x=\frac{p+2q+p-2q+2\sqrt{(p+2q)(p-2q)}}{p+2q-p+2q}
  • x=\frac{2p+2\sqrt{p^2-(2q)^2}}{4q} ( using the property (a-b)(a+b)=a^2-b^2 )
  • x=2(\frac{p+\sqrt{p^2-4q^2}}{4q})
  • x=\frac{p+\sqrt{p^2-4q^2}}{2q}
  • (2q)x=p+\sqrt{p^2-4q^2}
  • 2qx-p=\sqrt{p^2-4q^2}
  • Now squaring on both sides we get
  • (2qx-p)^2=(\sqrt{p^2-4q^2})^2
  • (2qx)^2+p^2-2(2qx)(p)=p^2-4q^2
  • 4q^2x^2-4qpx=-4q^2
  • Dividing by 4q on both sides we get
  • \frac{4q^2x^2-4qpx}{4q}=-\frac{4q^2}{4q}
  • qx^2-px=-q
  • Therefore qx^2-px+q=0

Hence proved

Similar questions