If x = p cos , y = q sin , then find the value of q 2 x 2 + p 2 y 2 - p 2 q 2
Answers
GIVEN :–
TO FIND :–
• Value of q²x² + p²y² - p²q² = ?
SOLUTION :–
• Let –
• Now put the values –
• We know that –
• So that –
Answer:
GIVEN :–
\begin{gathered} \\ \bf \: \: {\huge{.} }\: \: x = p \cos( \theta) \end{gathered}
.x=pcos(θ)
\begin{gathered} \\ \bf \: \: {\huge{.} }\: \: y = q \sin( \theta) \end{gathered}
.y=qsin(θ)
TO FIND :–
• Value of q²x² + p²y² - p²q² = ?
SOLUTION :–
• Let –
\begin{gathered} \\ \implies\bf A = {q}^{2} {x}^{2} + {p}^{2} {x}^{2} - {p}^{2} {q}^{2} \end{gathered}
⟹A=q
2
x
2
+p
2
x
2
−p
2
q
2
• Now put the values –
\begin{gathered} \\ \implies\bf A = {q}^{2} {(p \cos \theta)}^{2} + {p}^{2} {(q \sin\theta)}^{2} - {p}^{2} {q}^{2} \end{gathered}
⟹A=q
2
(pcosθ)
2
+p
2
(qsinθ)
2
−p
2
q
2
\begin{gathered} \\ \implies\bf A = {q}^{2} {(p)}^{2} {( \cos\theta)}^{2} + {p}^{2} {(q )}^{2} {(\sin\theta)}^{2} - {p}^{2} {q}^{2} \end{gathered}
⟹A=q
2
(p)
2
(cosθ)
2
+p
2
(q)
2
(sinθ)
2
−p
2
q
2
\begin{gathered} \\ \implies\bf A = {q}^{2} {p}^{2} \cos^{2} (\theta)+ {p}^{2} {q}^{2} \sin^{2} (\theta)- {p}^{2} {q}^{2} \end{gathered}
⟹A=q
2
p
2
cos
2
(θ)+p
2
q
2
sin
2
(θ)−p
2
q
2
\begin{gathered} \\ \implies\bf A = {p}^{2} {q}^{2}\cos^{2} (\theta)+ {p}^{2} {q}^{2} \sin^{2} (\theta)- {p}^{2} {q}^{2} \end{gathered}
⟹A=p
2
q
2
cos
2
(θ)+p
2
q
2
sin
2
(θ)−p
2
q
2
\begin{gathered} \\ \implies\bf A = {p}^{2} {q}^{2} \{\cos^{2} (\theta)+\sin^{2} (\theta) \}- {p}^{2} {q}^{2} \end{gathered}
⟹A=p
2
q
2
{cos
2
(θ)+sin
2
(θ)}−p
2
q
2
• We know that –
\begin{gathered} \\ \: \longrightarrow \: \large \pink{ \boxed{\bf \cos^{2} (\theta)+\sin^{2} (\theta) = 1}}\end{gathered}
⟶
cos
2
(θ)+sin
2
(θ)=1
• So that –
\begin{gathered} \\ \implies\bf A = {p}^{2} {q}^{2} \{1\}- {p}^{2} {q}^{2} \end{gathered}
⟹A=p
2
q
2
{1}−p
2
q
2
\begin{gathered} \\ \implies\bf A = {p}^{2} {q}^{2}- {p}^{2} {q}^{2} \end{gathered}
⟹A=p
2
q
2
−p
2
q
2
\begin{gathered} \\ \implies \large{\boxed{\bf A =0}}\end{gathered}
⟹
A=0