if x^(p)=y^(q)=z^(r)and (y)/(x)=(z)/(y) then prove that (2)/(q)=(1)/(p)+(1)/(r)
Answers
Answered by
4
Solution:
Given : x^p = y^q = z^r
y/x = z/y
To prove : 2/q = 1/p + 1/r
Proof :
We have ;
x^p = y^q = z^r
Let ,
x^p = y^q = z^r = k
If x^p = k
then x = k^(1/p) -------(1)
If y^q = k
then y = k^(1/q) -------(2)
If z^r = k
then z = k^(1/r) --------(3)
Also,
It is given that ;
y/x = z/y
Thus,
=> y/x = z/y
=> y•y = z•x
=> y² = xz
Using eq-(1) , (2) and (3) , we have ;
=> [ k^(1/q) ]² = [ k^(1/p) ]•[ k^(1/r) ]
=> k^(2/q) = k^(1/p + 1/r)
=> 2/q = 1/p + 1/r
Hence proved .
Similar questions