Math, asked by sk781351, 9 months ago

If x^p=y, y^q=z, z^r=x then prove pqr=1.​

Answers

Answered by Anonymous
3

Answer:

If p^(1/x) = q^(1/y) = r^(1/z) and p•q•r = 1, then prove that x + y + z = 0.

Note:

• (a^m)×(a^n) = a^(m+n)

• (a^m)/(a^n) = a^(m-n)

• (a^m)×(b^m) = (a×b)^m

• (a^m)/(b^m) = (a/b)^m

• [a^m]^n = a^(m×n)

• a^0 = 1

• If a^m = a^n then m = n

• If a^m = b then a = b^(1/m)

Solution:

Given:

p^(1/x) = q^(1/y) = r^(1/z)

p•q•r = 1

To prove:

x + y + z = 0

Proof:

Let p^(1/x) = q^(1/y) = r^(1/z) = k

Then ,

=> p^(1/x) = k

=> p = k^x --------(1)

Similarly,

=> q^(1/y) = k

=> q = k^y --------(2)

Similarly,

=> r^(1/z) = k

=> r = k^z ---------(3)

Now,

Multiplying eq-(1) , (2) and (3) , we have ;

=> p•q•r = (k^x)•(k^y)•(k^z)

=> p•q•r = k^(x+y+z)

=> 1 = k^(x+y+z) { Given : p•q•r = 1 }

=> k^0 = k^(x+y+z)

=> 0 = x + y + z

=> x + y + z = 0

Hence proved.

Similar questions