If x^p=y, y^q=z, z^r=x then prove pqr=1.
Answers
Answered by
3
Answer:
If p^(1/x) = q^(1/y) = r^(1/z) and p•q•r = 1, then prove that x + y + z = 0.
Note:
• (a^m)×(a^n) = a^(m+n)
• (a^m)/(a^n) = a^(m-n)
• (a^m)×(b^m) = (a×b)^m
• (a^m)/(b^m) = (a/b)^m
• [a^m]^n = a^(m×n)
• a^0 = 1
• If a^m = a^n then m = n
• If a^m = b then a = b^(1/m)
Solution:
Given:
p^(1/x) = q^(1/y) = r^(1/z)
p•q•r = 1
To prove:
x + y + z = 0
Proof:
Let p^(1/x) = q^(1/y) = r^(1/z) = k
Then ,
=> p^(1/x) = k
=> p = k^x --------(1)
Similarly,
=> q^(1/y) = k
=> q = k^y --------(2)
Similarly,
=> r^(1/z) = k
=> r = k^z ---------(3)
Now,
Multiplying eq-(1) , (2) and (3) , we have ;
=> p•q•r = (k^x)•(k^y)•(k^z)
=> p•q•r = k^(x+y+z)
=> 1 = k^(x+y+z) { Given : p•q•r = 1 }
=> k^0 = k^(x+y+z)
=> 0 = x + y + z
=> x + y + z = 0
Hence proved.
Similar questions