Math, asked by shreypBv, 1 year ago

if x plus one upon x is equal to root 5 find the value of x to the power 4 + 1 upon x to the power 4​

Answers

Answered by MehulPalod
3

Answer:

7

Step-by-step explanation:

Explanation is written in the image linked above.

Attachments:
Answered by Anonymous
10

\mathfrak{\large{\underline{\underline{Answer:-}}}}

\boxed{\bf{{x}^{4} + \dfrac{1}{ {x}^{4}} = 7}}

\mathfrak{\large{\underline{\underline{Explanation:-}}}}

Given :- \sf{x +  \dfrac{1}{x} =  \sqrt{5}}

To find :- \sf{x^4 +  \dfrac{1}{x^4}}

Solution :-

\tt{x +  \dfrac{1}{x} =  \sqrt{5}}

By squaring on both the sides :-

\tt{{(x +  \dfrac{1}{x})}^2 =  (\sqrt{5})^2}

We know that (a + b)² = a² + b² + 2ab

Here a = x, b = 1/x

By substituting the values in the identity we have :-

\tt{{x}^{2} +  \dfrac{1}{ {x}^{2} }  + 2(x)( \dfrac{1}{x}) =5}

\tt{{x}^{2} +  \dfrac{1}{ {x}^{2} } + 2 =5}

\tt{{x}^{2} +  \dfrac{1}{ {x}^{2}} = 5 - 2}

\tt{{x}^{2} +  \dfrac{1}{ {x}^{2}} = 3}

By squaring on both the sides :-

\tt{{({x}^{2} +  \dfrac{1}{ {x}^{2}})}^2 = 3^2}

We know that (a + b)² = a² + b² + 2ab

Here a = x², b = 1/x²

By substituting the values in the identity we have :-

\tt{{({x}^{2})}^{2}  +  {(\dfrac{1}{ {x^2}})}^{2}  + 2( {x}^{2})( \dfrac{1}{ {x}^{2} }) =9}

\tt{{x}^{2 \times 2} + \dfrac{1}{ {x}^{2 \times 2}} + 2=9}

\tt{{x}^{4} + \dfrac{1}{ {x}^{4}} = 9 - 2}

\tt{{x}^{4} + \dfrac{1}{ {x}^{4}} = 7}

\boxed{\bf{{x}^{4} + \dfrac{1}{ {x}^{4}} = 7}}

\mathfrak{\large{\underline{\underline{Identity\:Used:-}}}}

(a + b)² = a² + b² + 2ab

\mathfrak{\large{\underline{\underline{Some\:Important\:Identities:-}}}}

[1] (a + b)² = a² + b² + 2ab

[2] (a - b)² = a² + b² - 2ab

[3] (a + b)(a - b) = a² - b²

[4] (x + a)(x + b) = x² + (a + b)x + ab

Similar questions