If x = r sin θ cos φ, y = r sin θ sin φ and z = r cos θ, then
A. x² + y² + z² = r²
B. x² + y²− z² = r²
C. x²− y² + z² = r²
D. z² + y²− x² = r²
Answers
Answered by
1
If x= rsinAcosB x²=r²sin²Acos²B
y= rsinAsinB y²=r²sin²Asin²B
z=rcosA z²=r²cos²A
x²+y²+z² = r²sin²Acos²B + r²sin²Asin²B
+r²cos²A
= r²sin²A(cos²B+sin²B)+r²cos²A
=r²sin²A+r²cos²A
=r²(sin²A+cos²A)
=r²
x²+y²+z²=r²
hence, option A is correct
Answered by
0
The required "option A) " is correct.
Step-by-step explanation:
We have,
x = .................(1)
y = .................(2)
and z = .................(3)
Squaring and adding (1), (2) and (3), we get
⇒
⇒
Using the trigonometric identity,
= 1
⇒
⇒
Taking as common, we get
⇒
Again, using the trigonometric identity,
= 1
⇒
⇒
Thus, the required "option A) " is correct.
Similar questions