Math, asked by shrijamittal11, 7 months ago

If x = r sinA cosC , y = r sinA sinC , z = r cosA ;

then prove that r² = x² + y² + z²​

Answers

Answered by pandaXop
28

Step-by-step explanation:

Given:

  • x = r sinA cosC
  • y = r sinA sinC
  • z = r cosA

To Prove:

  • r² = x² + y² + z²

Solution: Taking RHS , we have

  • x² + y² + z²

[ Now put the value of x , y and z in RHS ]

➮ x² = (r sinA cosC)²

  • x² = r² sin²A cos²C

➮ y² = (r sinA sinC)²

  • y² = r² sin²A sin²C

➮ z² = (r cosA)²

  • z² = r² cos²A

By adding above terms

➟ r² sin²A cos²C + r² sin²A sin²C + r² cos²A

➟ r² sin²A ( cos²C + sin²C ) + r² cos² A

➟ r² sin²A ( 1 ) + r² cos² A

➟ r² sin²A + r² cos²A

➟ r² ( sin²A + cos²A )

➟ r² × 1

➟ r²

Hence, LHS = RHS i.e r² = x² + y² + z².

Identities used here

  • sin²θ + cos²θ = 1

\large\bold{\texttt {Proved }}


ButterFliee: Perfect 。◕‿◕。
Answered by BrainlyHero420
142

Answer:

Given :-

⬤ x = r sinA cosC

⬤ y = r sinA sinC

⬤ z = r cosA

To Prove :-

⬤ r² = x² + y² +z²

Solution :-

➣ R.H.S = x² + y² + z²

Putting the value of x, y and z in R.H.S we get,

\implies (r sinA cosC)² + (r sinA sinC)² + (r cosA)²

\implies r² sin²A cos²C + r² sin²A sin²C + r² cos ²A

\implies r² sin²A(cos²C + sin²C) + r² cos ²A

\implies r² sin²A(1) + r² cos²A

\implies r² sin²A + r² cos²A

\implies r²(sin²A + cos²A)

\implies r²(1)

➨ r² = L.H.S

\mapsto \boxed{\bold{\large{PROVED}}}

_______________________________

Similar questions