If x = r sinA cosC , y = r sinA sinC , z = r cosA ;
then prove that r² = x² + y² + z²
Answers
Answered by
28
Step-by-step explanation:
Given:
- x = r sinA cosC
- y = r sinA sinC
- z = r cosA
To Prove:
- r² = x² + y² + z²
Solution: Taking RHS , we have
- x² + y² + z²
[ Now put the value of x , y and z in RHS ]
➮ x² = (r sinA cosC)²
- x² = r² sin²A cos²C
➮ y² = (r sinA sinC)²
- y² = r² sin²A sin²C
➮ z² = (r cosA)²
- z² = r² cos²A
By adding above terms
➟ r² sin²A cos²C + r² sin²A sin²C + r² cos²A
➟ r² sin²A ( cos²C + sin²C ) + r² cos² A
➟ r² sin²A ( 1 ) + r² cos² A
➟ r² sin²A + r² cos²A
➟ r² ( sin²A + cos²A )
➟ r² × 1
➟ r²
Hence, LHS = RHS i.e r² = x² + y² + z².
★ Identities used here
- sin²θ + cos²θ = 1
ButterFliee:
Perfect 。◕‿◕。
Answered by
142
Answer:
Given :-
⬤ x = r sinA cosC
⬤ y = r sinA sinC
⬤ z = r cosA
To Prove :-
⬤ r² = x² + y² +z²
Solution :-
➣ R.H.S = x² + y² + z²
✫ Putting the value of x, y and z in R.H.S we get,
(r sinA cosC)² + (r sinA sinC)² + (r cosA)²
r² sin²A cos²C + r² sin²A sin²C + r² cos ²A
r² sin²A(cos²C + sin²C) + r² cos ²A
r² sin²A(1) + r² cos²A
r² sin²A + r² cos²A
r²(sin²A + cos²A)
r²(1)
➨ r² = L.H.S
_______________________________
Similar questions