If x = r sinAcosC, y=rsinAsinC, z=rcosA, Prove that r²=x²+y²+z².
Answers
Answered by
131
x = rsinAcosC
y= rsinAsinC
z= rcosA
squaring and adding all,
x² +y²+z² =( rsinAcosC)²+(rsinAsinC)+(rcosA)²
=r²[ sin²Acos²C + sin²Asin²C + cos²A]
=r² [sin²A(cos²C + sin²C) + cos²A] ∵cos²α+sin²α =1
=r²[sin²A+cos²A]
=r²
proved
y= rsinAsinC
z= rcosA
squaring and adding all,
x² +y²+z² =( rsinAcosC)²+(rsinAsinC)+(rcosA)²
=r²[ sin²Acos²C + sin²Asin²C + cos²A]
=r² [sin²A(cos²C + sin²C) + cos²A] ∵cos²α+sin²α =1
=r²[sin²A+cos²A]
=r²
proved
lucifer5:
im very much thankfull to you
Answered by
37
Step-by-step explanation:
x= rsinAcosC ----1
y= rsinAsinC -----2
z= rcosA-----------3
squaring eqⁿ 1, 2 and 3, we get
x²= r²sin²Acos²C ----4
y²= r²sin²Asin²C -----5
z²= r²cos²A ------------6
Adding 4, 5 and 6, we get
x²+ y²+ z²= r²sin²Acos²C+ r²
sin²Asin²C+ r²cos²A
x²+ y²+ z²= r²sin²A(cos²C +sin²C)+
r²cos²A
x²+ y²+ z²= r²sin²A+ r²cos²A
-(sin²∅+cos²∅=1)
x²+ y²+ z²= r²(sin²A+ cos²A)
x²+ y²+ z²= r²
-(sin²∅+cos²∅=1)
Hence, proved. Hope this helps you.
Similar questions