Math, asked by chitznair15, 9 months ago

if x+ root 10 y = root 5+ root 2 /root 5 - root 2.find x and y​

Answers

Answered by anindyaadhikari13
2

<hr/>

x +  \sqrt{10} y =  \frac{ \sqrt{5} +  \sqrt{2}}{ \sqrt{5} -  \sqrt{2}}

\implies x +  \sqrt{10} y =  \frac{ (\sqrt{5}  +  \sqrt{2} )( \sqrt{5}   +   \sqrt{2} )}{( \sqrt{5} -  \sqrt{2} )( \sqrt{5}   +  \sqrt{2} )}

\implies x +  \sqrt{10} y =  \frac{5 + 2 + 2 \sqrt{10} }{5 - 4}

\implies x +   \sqrt{10} y =  \frac{7 + 2 \sqrt{10} }{1}

\implies x +  \sqrt{10} y = 7 + 2 \sqrt{10}

\implies x = 7

\implies y = 2

Therefore, x=7, y=2.

<hr/>

Similar questions