if x =root 3 + root 2 find value of x cube -1/x cube
Answers
Answered by
9
Answer :
x³ - 1/x³ = 22√2
Solution :
- Given : x = √3 + √2
- To find : x³ - 1/x³ = ?
We have ,
x = √3 + √2
Thus ,
1/x = 1/(√3 + √2)
Now ,
Rationalising the denominator of the term in RHS , we get ;
=> 1/x = (√3 - √2) / (√3 + √2)(√3 - √2)
=> 1/x = (√3 - √2) / [ (√3)² - (√2)² ]
=> 1/x = (√3 - √2) / (3 - 2)
=> 1/x = (√3 - √2) / 1
=> 1/x = √3 - √2
Now ,
=> x - 1/x = (√3 + √2) - (√3 - √2)
=> x - 1/x = √3 + √2 - √3 + √2
=> x - 1/x = 2√2
Now ,
We know that ,
(A - B)³ = A³ - B³ - 3AB(A - B)
If A = x and B = 1/x , then
=> (x - 1/x)³ = x³ - (1/x)³ - 3•x•(1/x)•(x - 1/x)
=> (x - 1/x)³ = x³ - 1/x³ - 3•(x - 1/x)
=> (2√2)³ = x³ - 1/x³ - 3•2√2
=> 16√2 = x³ - 1/x³ - 6√2
=> x³ - 1/x³ = 16√2 + 6√2
=> x³ - 1/x³ = 22√2
Hence ,
x³ - 1/x³ = 22√2
Similar questions