Math, asked by likhitgandole9, 1 year ago

if x = root 3 -root 2upon root 3+root 2 and y = root 3 +root 2 upon root 3 -root 2, find the value of x square + ysquare + xy

Answers

Answered by mindfulmaisel
59

The value of x^{2}+y^{2}+x y \text { is } \bold{99}.

Given:

x=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} ;\quad y=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}

Solution:

x=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} ; y=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}

Rationalizing the denominator for x (Numerator also can be rationalized but denominator is much easier for calculation purpose)

x=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} \times \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}

=\frac{(\sqrt{3}-\sqrt{2})^{2}}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}

=\frac{3+2-2 \sqrt{6}}{3-2}

=5-2 \sqrt{6}

Squaring on both sides,

x^{2}=25+24-20 \sqrt{6}\bold{=49-20 \sqrt{6}}

Rationalizing the denominator for y

y=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} \times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}

=\frac{(\sqrt{3}+\sqrt{2})^{2}}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}

=\frac{3+2+2 \sqrt{6}}{3-2}

=5+2 \sqrt{6}

Squaring on both sides,

y^{2}=25+24+20 \sqrt{6}\bold{=49+20 \sqrt{6}}

Consider, x^{2}+y^{2}+x y=49+20 \sqrt{6}+49-20 \sqrt{6}+(5+2 \sqrt{6})(5-2 \sqrt{6})

\bold{=98+25-24=99}

Answered by mysticd
12

Answer:

The \:value \: of \: x^{2}+y^{2}+xy = 99

Step-by-step explanation:

Given ,\\</p><p>x=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\\,y=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}

i) x+y =\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}+\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}

/* We know the algebraic identities:

1) (a-b)²+(a+b)²=2(+)

2) (a-b)(a+b)=-b² */

=\frac{(\sqrt{3}-\sqrt{2})^{2}+(\sqrt{3}+\sqrt{2})^{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}

=\frac{2[(\sqrt{3})^{2}+(\sqrt{2})^{2}]}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}

=\frac{2(3+2)}{3-2}

=\frac{2\times 5}{1}</p><p>[tex]=\frac{10}{1}

=10--(1)

ii)xy =\big(\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\big)\big(\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\big)\\=1--(2)

 Now,\\</p><p>x^{2}+y^{2}+xy\\=(x+y)^{2}-xy\\=(10)^{2}-1

\* From (1) and (2) *\

=100-1\\=99

Therefore,

The \:value \: of \: x^{2}+y^{2}+xy = 99

•••♪

Similar questions