if x= root 3-root2/root3+root2 and y= root 3+ root 2 / root 3- root 2 find the value of x square +y square +xy
Answers
Answer:
Value of x² + y² + xy is 99.
Step-by-step explanation:
Given:
To find: value of x² + y² + xy
First we find,
= 1
= 49 - 20√6
= 49 + 20√6
Now,
x² + y² + xy = 49 - 20√6 + 49 + 20√6 + 1 = 49 + 49 + 1 = 99
Therefore, Value of x² + y² + xy is 99.
Answer:
x² +y² +xy = 49-20√6+49+20√6 +1
=49+49+1=99
x² +y²+xy is 99
Step-by-step explanation:
x = and y =
xy = ×
=
= √3² -√2² / √3² -√2²
= 3-2 / 3-2
= 1
x² = ×
= (√3 -√2 )² /(√3+√2)²
= 3+2-2√3√2 / 3+2 +2√3√2
=5-2√6 / 5+2√6
= 5-2√6 /5+2√6 × 5-2√6/ 5-2√6
(5-2√6)² / (5+2√6)(5-2√6)
= 25+24-20√ 6 /25-24
49-20√6
y ²= ×
= (√3+√2)² /(√3-√2)²
= 3+2+2√3√2 /3+2-2√3√2
=5+2√6 / 5- 2√6
=5+2√6/5-2√6 × 5+2√6 /5+2√6
( 5+2√6)² / (5+2√6) (5 -2√6)
25+24+20√6 / 25-24
= 49+20√ 6
x² +y² +xy = 49-20√6+49+20√6 +1
=49+49+1=99
x² +y²+xy is 99
#SPJ2