if x=root 5-root 2 by root 5+ root 2 and y=root 5 + root 2 by root 5- root 2, find the value of x square+xy+y square
Answers
Answered by
2
You can solve it by rationalising both the terms
pippu:
I tried...but not gttng a definite ans
Answered by
6
Given: x=√5-√2 /√5+√2
y =√5+√2 /√5-√2
Let's first rationalise x
x =√5-√2 /√5+√2 *√5-√2 /√5-√2
= (√5-√2)²/(√5)²-(√2 )²
=(√5)²+(√2)²-2(√5)(√2)/5-2
= 5+2-2√10 / 3
=7-2√10 / 3
Now we rationalise y
y =√5+√2 /√5-√2 *√5+√2 /√5+√2
= 5+2+2√10 / 3 = 7+2√10 / 3
Answer: now to find x² +y² +xy
=(7-2√10 / 3)² +(7+2√10 / 3)² +(7-2√10 / 3)(7+2√10 / 3)
=(49+40-28√10)/ 9 +(49+40+28√10) / 9 + [(7)²-(2√10)²]/(3)²
=(49+40-28√10)/ 9 +(49+40+28√10) / 9 + [49-40]/9
=(49+40-28√10)/ 9 +(49+40+28√10) / 9 + 9/9
= (89-28√10)/9 + (89+28√10)/ 9 + 1
= (178 -28√10+28√10) / 9 +1
=178/9 + 1
=19.777+1
=20.77
y =√5+√2 /√5-√2
Let's first rationalise x
x =√5-√2 /√5+√2 *√5-√2 /√5-√2
= (√5-√2)²/(√5)²-(√2 )²
=(√5)²+(√2)²-2(√5)(√2)/5-2
= 5+2-2√10 / 3
=7-2√10 / 3
Now we rationalise y
y =√5+√2 /√5-√2 *√5+√2 /√5+√2
= 5+2+2√10 / 3 = 7+2√10 / 3
Answer: now to find x² +y² +xy
=(7-2√10 / 3)² +(7+2√10 / 3)² +(7-2√10 / 3)(7+2√10 / 3)
=(49+40-28√10)/ 9 +(49+40+28√10) / 9 + [(7)²-(2√10)²]/(3)²
=(49+40-28√10)/ 9 +(49+40+28√10) / 9 + [49-40]/9
=(49+40-28√10)/ 9 +(49+40+28√10) / 9 + 9/9
= (89-28√10)/9 + (89+28√10)/ 9 + 1
= (178 -28√10+28√10) / 9 +1
=178/9 + 1
=19.777+1
=20.77
Similar questions