Math, asked by bhavyagupta127, 1 year ago

if x = root 7 + root 6 / root 7 - root 6 , then find value of (x+1/x)2


victory1venkatesh: IS the answer 676/85
i1900454balbir: no

Answers

Answered by uneq95
65
x =(√7+√6)/(√7-√6)

x + 1/x = (√7+√6)/(√7-√6)+(√7-√6)/(√7+√6)
= {(√7+√6)² + (√7-√6)²}/{(√7+√6)(√7-√6)}
= 2(7+6)/{7-6}
= 2× 13/1
= 26

(x + 1/x)² = 26² = 676

I hope you understand the approach.
All the best!
Answered by guptasingh4564
66

The value of (x+\frac{1}{x})^{2} is 676

Step-by-step explanation:

Given,

x=\frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}-\sqrt{6}} then find value of (x+\frac{1}{x})^{2}

x=\frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}-\sqrt{6}}

x=\frac{(\sqrt{7}+\sqrt{6})(\sqrt{7}+\sqrt{6})}{(\sqrt{7}-\sqrt{6})(\sqrt{7}+\sqrt{6})}

x=\frac{(\sqrt{7}+\sqrt{6})^{2}}{(\sqrt{7})^{2} -(\sqrt{6})^{2} }

x=(\sqrt{7})^{2}+(\sqrt{6})^{2}+2\sqrt{42}

x=13+2\sqrt{42}

Similarly,

\frac{1}{x}=\frac{1}{\frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}-\sqrt{6}}}

\frac{1}{x}=\frac{\sqrt{7}-\sqrt{6}}{\sqrt{7}+\sqrt{6}}

\frac{1}{x}=13-2\sqrt{42}

(x+\frac{1}{x})^{2}

=(13+2\sqrt{42}+13-2\sqrt{42})^{2}

=(13+13)^{2}

=(26)^{2}

=676

So, The value of (x+\frac{1}{x})^{2} is 676

Similar questions