If, x = [root(p+q) +root(p-q)] /[root(p+q) - root(p-q)] then find the value of qx2 – 2px + q .
Answers
The correct answer is,
Given :
x = (√p+q + √p-q ) / (√p+q - √p-q )
Solution :
x = (√p+q + √p-q ) / (√p+q - √p-q ) * (√p+q + √p-q ) / (√p+q + √p-q )
by (a+b) (a-b) = a² - b²
we get,
x= (√p+q + √p-q )² / ( p+q - (p-q) )
x = p+q+p-q +2 √p+q √p-q / 2q
x = 2p + 2 √p² - q² / 2q
x = p + √p² - q² / q
Now, let us find the value of ,
qx² - 2px + q = q ( p + √p² - q² / q)² -2p ( p + √p² - q² / q) + q
= q( p + √p² - q² )² / q² - 2p ( p + √p² - q² / q) + q
= ( p + √p² - q² )² - 2p ( p + √p² - q² / q) + q² / q
= p² + p² - q² + 2p √p² - q² -2p² -2p √p² - q² +q² /q
On cancelling the positive and negative terms,
the numerator would be 0.
So, 0 / q = 0
qx² - 2px + q = 0
Answer:
qx² - 2px + q = 0
Step-by-step explanation:
If, x = [root(p+q) +root(p-q)] /[root(p+q) - root(p-q)] then find the value of qx2 – 2px + q .
x = (√(p + q) + √(p-q))/(√(p + q) - √(p-q))
Multiplying & diving by √(p + q) + √(p-q)
=> x = (p + q + p - q + 2√(p² - q²) )/ ( (p + q) - (p - q))
=> x = 2 ( p + √(p² - q²) ) / 2q
=> x = ( p + √(p² - q²) ) / q
=> qx = p + √(p² - q²)
=> qx - p = √(p² - q²)
Squaring both sides
=> q²x² + p² - 2pqx = p² - q²
=> q²x² - 2pqx = - q²
diving by q both sides
=> qx² - 2px = -q
=> qx² - 2px + q = 0