Math, asked by RAgarwal, 1 year ago

If x =root2+1/root 2-1 and y= root 2-1/root 2+1.Find the value of x^2+y^2+xy

Answers

Answered by DaIncredible
6
Hey friend,
Here is the answer you were looking for:
x =  \frac{ \sqrt{2} + 1 }{ \sqrt{2}  - 1}  \\  \\ on \: rationalizing \: we \: get \\  \\  =  \frac{ \sqrt{2}  + 1}{ \sqrt{2}  - 1}  \times  \frac{ \sqrt{2}  + 1}{ \sqrt{2}  + 1}  \\  \\ using \: the \: identities \\  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab  \\ (a + b)(a  - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ {( \sqrt{2}) }^{2} +  {(1)}^{2}   + 2 \times  \sqrt{2}  \times 1}{ {( \sqrt{2} )}^{2}  -  {(1)}^{2} }  \\  \\  =  \frac{2 + 1 + 2 \sqrt{2} }{2 - 1}  \\  \\x  = 3 + 2 \sqrt{2}  \\  \\ y =  \frac{ \sqrt{2}  - 1}{ \sqrt{2}  + 1}  \\  \\ on \: rationalizing \: we \: get \\  \\  =  \frac{ \sqrt{2} - 1 }{ \sqrt{2}  + 1}  \times  \frac{ \sqrt{2}  - 1}{ \sqrt{2}  - 1}  \\  \\ using \: the \: identities \\  {(a  -  b)}^{2}  =  {a}^{2}  +  {b}^{2}   -  2ab  \\ (a + b)(a  - b) =  {a}^{2}  -  {b}^{2} \\  \\  =  \frac{ {( \sqrt{2} )}^{2} +  {(1)}^{2}   - 2 \times  \sqrt{2}  \times 1}{ {( \sqrt{2}) }^{2}  -  {(1)}^{2} }  \\  \\  =  \frac{2 + 1 - 2 \sqrt{2} }{2 - 1}  \\  \\ y = 3 - 2 \sqrt{2}  \\  \\  {x}^{2}  +  {y}^{2}  + xy \\  \\  =  {(3 + 2 \sqrt{2}) }^{2}  +  {(3 - 2 \sqrt{2}) }^{2}  + (3 + 2 \sqrt{2} )(3 - 2 \sqrt{2} ) \\  \\ using \: the \: identities \\  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\  {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  = ( {(3)}^{2}  +  {(2 \sqrt{2} }^{2} ) + 2 \times 3  \times 2 \sqrt{2} ) + ( {(3)}^{2}  +  {(2 \sqrt{2)} }^{2}  - 2 \times 3 \times 2 \sqrt{2} ) +  ({(3)}^{2}  -  {(2 \sqrt{2)} }^{2})  \\  \\  = (9 + 8 + 12 \sqrt{2} ) + (9 + 8 - 12 \sqrt{2} ) + (9 - 8) \\  \\  = (17 + 12 \sqrt{2} ) + (17 - 12 \sqrt{2} ) + 1 \\  \\  = 17 + 12 \sqrt{2}  + 17 - 12 \sqrt{2}  + 1 \\  \\  = 17 + 17 + 1 + 12 \sqrt{2}  - 12 \sqrt{2}  \\  \\ ( + 12 \sqrt{2}  \: and \:  - 12 \sqrt{2}  \: got \: cancel) \\  \\  = 17 + 17 + 1 \\  \\  = 35


Hope this helps!!!!

@Mahak24

Thanks...
Similar questions