Math, asked by Alexander1111, 1 year ago

if x=root3+root2/root3-root2 and y=root 3-root 2/root3+root 2, find x square + y square

Answers

Answered by isyllus
531

X =(√3+√2)/(√3-√2)

By taking conjugate, we get

X  = (√3+√2) (√3+√2) /(√3-√2) (√3+√2)

    =(√3+√2)²/(√3²-√2²)

    =3+2√6+2 / (3-2) = 5+2√6

Y   = (√3-√2)/(√3+√2)

By taking conjugate we get

Y    = (√3-√2)²/ (√3+√2)(√3-√2)

      = 3-2√6+2/√3²-√2²

       = 5-2√6/(3-2) = 5-2√6

X²     = (5+2√6)² = 25+20√6+24 = 49+20√6

Y²      = (5-2√6)² = 25-20√6+24  = 49-20√6

X²+Y² =  49+20√6+49-20√6

X²+Y² = 98

Answered by bharathparasad577
3

Answer:

Concept:

The elimination of radicals from an algebraic fraction's denominator is known as root rationalization in elementary algebra. Then, multiply by and expand the product in the denominator as in the previous step.

Step-by-step explanation:

Given:

     $ x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$

      $ y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} $

Find:

        $x^{2}+y^{2}$

Solution:

By rationalizing x and y

$$\begin{gathered}\text { If } x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} \text { and } y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} \\\\x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} \times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}=\frac{(\sqrt{3}+\sqrt{2})^{2}}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}=\frac{(3+2+2 \sqrt{6})}{1}=5+2 \sqrt{6} \\\end{gathered}$$

$y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} \times \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}=\frac{(\sqrt{3}-\sqrt{2})^{2}}{3-2}=\frac{3+2-2 \sqrt{6}}{1}=5-2 \sqrt{6} \\\\$

$\\x^{2}+y^{2}=(5+2 \sqrt{6})^{2}+(5-2 \sqrt{6})^{2}\\\\={25+24+2 \cdot 5 \cdot2 \sqrt{6}+25+24-2 \cdot 5 \cdot \sqrt{6}}={49+49}=98 $

                                    $x^{2}+y^{2} = 98 $

#SPJ3

Similar questions