Math, asked by kanishka110, 1 year ago

if x=root5-root2/root5+root2 and y= root5+root2/root 5-root2.Find x^2+y^2+xy


Give the correct ans.and I will mark it as a brainlist ans.
plzzzz

Attachments:

Answers

Answered by MaheswariS
5

\underline{\textbf{Given:}}

\mathsf{x=\dfrac{\sqrt5-\sqrt2}{\sqrt5+\sqrt2}\;\;and\;\;y=\dfrac{\sqrt5+\sqrt2}{\sqrt5-\sqrt2}}

\underline{\textbf{To find:}}

\textsf{The value of}\;\mathsf{x^2+y^2+xy}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{x=\dfrac{\sqrt5-\sqrt2}{\sqrt5+\sqrt2}\;\;and\;\;y=\dfrac{\sqrt5+\sqrt2}{\sqrt5-\sqrt2}}

\mathsf{x+y=\dfrac{\sqrt5-\sqrt2}{\sqrt5+\sqrt2}+\dfrac{\sqrt5+\sqrt2}{\sqrt5-\sqrt2}}

\mathsf{x+y=\dfrac{(\sqrt5-\sqrt2)^2+(\sqrt5+\sqrt2)^2}{(\sqrt5+\sqrt2)(\sqrt5-\sqrt2)}}

\textsf{Using suitable identities, we get}

\mathsf{x+y=\dfrac{5+2-2\sqrt5\sqrt2+5+2+2\sqrt5\sqrt2}{(\sqrt5)^2-(\sqrt2)^2}}

\mathsf{x+y=\dfrac{14}{5-2}}

\mathsf{x+y=\dfrac{14}{3}}

\mathsf{Now,}

\mathsf{x^2+y^2+xy}

\mathsf{=(x+y)^2-xy}

\mathsf{=\left(\dfrac{14}{3}\right)^2-\left(\dfrac{\sqrt5-\sqrt2}{\sqrt5+\sqrt2}{\times}\dfrac{\sqrt5+\sqrt2}{\sqrt5-\sqrt2}\right)}

\mathsf{=\dfrac{196}{9}-1}

\mathsf{=\dfrac{196-9}{9}}

\mathsf{=\dfrac{187}{9}}

\underline{\textbf{Identities used:}}

\boxed{\begin{minipage}{5cm}$\\\mathsf{1.\;(a+b)^2=a^2+b^2+2ab}\\\\\mathsf{2.\;(a+b)^2=a^2+b^2+2ab}\\\\\mathsf{3.\;(a-b)(a+b)=a^2-b^2}\\$\end{minipage}}

Similar questions