Math, asked by ojitoinams5012, 1 year ago

If x=sec theta - tan theta and y=cosec theta + cot theta then prove that xy+1=y-x

Answers

Answered by gaganjaju1990
37

Answer:

Hope it is answer




Attachments:
Answered by FelisFelis
26

Answer:

Given: x=\sec \theta- \tan \theta and  y=\cosec \theta+ \cot \theta

We have to prove:- xy + 1 = y - x

proof:

If x=\sec \theta- \tan \theta

Since, \sec \theta=\frac{1}{\cos \theta} and \tan \theta=\frac{\sin \theta}{\cos \theta}

x = \frac{1}{\cos \theta}- \frac{\sin \theta}{\cos \theta}

Take L.C.M in above expression,

x = \frac{1-\sin \theta}{\cos \theta}

Since, \sin \theta=2\sin \frac{\theta}{2}\cos \frac{\theta}{2} and \sin^{2} \frac{\theta}{2} + \cos^{2} \frac{\theta}{2} =1

x = \frac{\sin^{2} \frac{\theta}{2} + \cos^{2} \frac{\theta}{2} -2\sin \frac{\theta}{2}\cos \frac{\theta}{2}}{\cos^{2} \frac{\theta}{2}-\sin^{2} \frac{\theta}{2}}

x = \frac{(\cos^{2} \frac{\theta}{2} - \sin^{2} \frac{\theta}{2})^{2}}{(\cos\frac{\theta}{2}-\sin \frac{\theta}{2})(\cos\frac{\theta}{2}+\sin \frac{\theta}{2})}

x = \frac{\cos^{2} \frac{\theta}{2} - \sin^{2} \frac{\theta}{2}}{\cos\frac{\theta}{2}+\sin \frac{\theta}{2}}

Dividing numerator and denominator by \sin \frac{\theta}{2}

x = \frac{\cot^{2} \frac{\theta}{2} - 1}{\cot^{2} \frac{\theta}{2} + 1}

Now, simplify the y,

y=\cosec \theta+ \cot \theta

Since, \cosec \theta=\frac{1}{\sin \theta} and \cot \theta=\frac{\cos \theta}{\sin \theta}

y = \frac{1}{\sin \theta}- \frac{\cos \theta}{\sin \theta}

Take L.C.M in above expression,

y = \frac{1-\cos \theta}{\sin \theta}

y = \frac{1+2\cos^{2} \frac{\theta}{2}-1}{2\sin \frac{\theta}{2}\cos \frac{\theta}{2}}

y=\cot \frac{\theta}{2}

Now, replace \cot \frac{\theta}{2} in x = \frac{\cot^{2} \frac{\theta}{2} - 1}{\cot^{2} \frac{\theta}{2} + 1} by y

we get x=\frac{y-1}{y+1}

we need to prove xy+1=y-x

L.H.S

xy + 1

y\frac{y-1}{y+1}+1

\frac{y^{2}-y+y+1}{y+1}

\frac{y^{2}+1}{y+1}

R.H.S

y - x

y -\frac{y-1}{y+1}

\frac{y^{2}+y-y+1}{y+1}

\frac{y^{2}+1}{y+1}

L.H.S = R.H.S

Hence proved

Similar questions