Math, asked by PHP, 9 months ago

If x=sin^2theta and y= cos^2 theta is a solution of x+y-k^2=0 then find the value of k

Answers

Answered by Anonymous
7

Question :

If x =  \sin {}^{2}  \beta and

y =   \cos {}^{2} ( \beta ) is a solution of x+y-k^2=0 then find the value of k .

Some Trignometric Formulas:

  • sin²A + cos²A = 1
  • sec²A - tan²A = 1
  • cosec²A - cot²A = 1
  • sin2A = 2 sinA cosA
  • cos2A = cos²A - sin²A

Solution :

given :

x =  \sin {}^{2}  \beta

y =   \cos {}^{2} ( \beta )

we have to find the value of k ,if :

x + y  - k {}^{2}  = 0

⇒x + y = k²

Now put the values of x and y

 \sin {}^{2} ( \beta )    + \cos {}^{2} ( \beta )  = k {}^{2}

we know that

sin²A + cos²A = 1

⇒k² = 1

{\purple{\boxed{\large{\bold{ k  =  \frac{ + }{} 1}}}}}

Answered by amitkumar44481
2

Answer:

 \:  \:  \:  \tt \pm1. \\  \\  \\

Explanation :

 \tt \:  \:  \:  \:  \:  \: x = { \sin }^{2}  \theta.  \\ \:  \:  \:  \:  \:  \:    \tt y = {  \cos }^{2}  \theta.

According to equation,

 \:  \:  \:  \:  \:  \:  \leadsto \tt{x + y -  {k}^{2}  = 0.}

 \:  \:  \:  \:  \:  \:  \leadsto \tt { \sin }^{2}  \theta +  {\cos}^{2}  \theta -  {k}^{2}  = 0.

 \:  \:  \:  \:  \:  \:  \tt \leadsto 1 -  {k}^{2}  = 0.

 \:  \:  \:  \:  \:  \:  \tt \leadsto \cancel  -  {k}^{2}  =   \cancel- 1.

 \tt \:  \:  \:  \:  \:  \:  \leadsto {k}^{2}  = 1.

 \tt \:  \:  \:  \:  \:  \:  \leadsto k = \sqrt{1} .

 \tt \:  \:  \:  \:  \:  \:  \leadsto k = \pm1.

Therefore, the value of k be 1.

 \\  \\  \\

Some information :

\boxed{</p><p></p><p>\begin{minipage}{7 cm}</p><p></p><p>Fundamental Trigonometric Identities \\ \\</p><p></p><p>$\sin^2\theta + \cos^2\theta=1 \\ \\</p><p></p><p>1+\tan^2\theta = \sec^2\theta \\ \\</p><p></p><p>1+\cot^2\theta = \text{cosec}^2 \, \theta$</p><p></p><p>\end{minipage}</p><p></p><p>}

Similar questions