If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
(a) 0
(b) 1
(c) −1
(d) 2
Answers
Answered by
3
SOLUTION :
The correct option is (b) : 1
Given : x sin (90° -θ ) cot (90° -θ ) = cos (90° -θ )
x sin (90° -θ ) cot (90° -θ ) = cos (90° -θ)
x cos θ tan θ = sin θ
[cos (90 - θ) = sin θ , sin (90° -θ ) = cos θ, cot (90° -θ ) = tan θ]
x cos θ × (sin θ/cos θ) = sin θ
[tan θ = sin θ/cos θ]
x sin θ = sin θ
x = sin θ/sin θ
x = 1
Hence, the value of x is 1 .
HOPE THIS ANSWER WILL HELP YOU…
Answered by
3
Answer:
Option(B)
Step-by-step explanation:
Given Equation is x sin(90 - θ) cot(90 - θ) = cos(90 - θ)
∴ sin(90 - θ) = cosθ, cot(90 - θ) = tanθ, cos(90 - θ) = sinθ
⇒ x cosθ * tanθ = sinθ
⇒ x tan θ = (sinθ/cosθ)
⇒ x tanθ = tanθ
⇒ x = 1
Therefore, value of x = 1.
Hope it helps!
Similar questions