Math, asked by Shibbu6031, 1 year ago

if x sin cube theta + y cos cube theta = sin theta cos theta× sin theta = y cos theta then prove - x square + y square = 1

Answers

Answered by shivam7448
0

hope you understand

Attachments:
Answered by Anonymous
11

\large{\underline{\bf{\green{Given:-}}}}

\bf\:x\:sin^3\theta+ y \:cos^3\theta=sin\theta.cos\theta

\bf\:x\:sin\:\theta=y\:cos\theta

\large{\underline{\bf{\green{To\:Find:-}}}}

✰ we need to prove that \bf\:x^2+y^2=1

\huge{\underline{\bf{\red{Solution:-}}}}

\bf\:x\:sin^3\theta+ y \:cos^3\theta=sin\theta.cos\theta

:\implies \:\:(x\:sin\theta)sin^2\theta+(y\:cos\theta)cos^2\theta=sin\theta.cos\theta

:\implies \:\:(x \:sin\theta)sin^2\theta+(x\:sin\theta)cos^2\theta=sin\theta.cos\theta

:\implies {\pink\:{\bf\:{y\:cos\theta=x\:sin\theta}}}

:\implies \:\:(x\:sin\theta)(sin^2\theta+cos^2\theta)=sin\theta.cos\theta

:\implies \:\:x\:sin\theta=sin\theta.cos\theta

:\implies \:\:{\pink{\bf{sin^2\theta+cos^2\theta=1}}}

:\implies \:\:x=cos\theta...................(i)

Now, \:x\:sin\theta=y\:cos\theta

:\implies \:\:cos\theta.sin\theta=y\:cos\theta

:\implies{\pink{\bf{x=cos\theta}}}

:\implies \:y=sin\theta\:..................(ii)

squaring (i) and (ii) and adding both the equations ,

we get,

:\implies \:\bf\:x^2+y^2=1

Hence proved.

━━━━━━━━━━━━━━━━━━━━━━

Similar questions