If x=sint and y=sin mt ,prove that (1=x2)y2-x y1 + m2y= 0
Answers
Answered by
3
In the questions there is a typing mistake.
LHS: (1-x²) d²y/dx² + x dy/dx + m² y
x = sin t, dx/dt = cos t = √(1-x²)
y = sin mt, dy/dt = m cos mt = m √(1-y²)
=> dy/dx = dx/dt ÷ dx/dt
= m cos(mt) / cos
t = m √(1-y²) / √(1-x²)
=> d²y/dx² = d/dx [dy/dx]
= m [ √(1-x²) * {-y/√(1-y²)} *
dy/dx - √(1-y²) {-x/√(1-x²) } ] / (1-x²)
= - m² y / (1-x²)
+ m x √(1-y²) / (1-x²)³/²
(substituting the value of dy/dx)...
LHS= (1-x²) d²y/dx² + x dy/dx + m² y
= [ - m² y + m x √(1-y²) /√(1-x²) ] + [ m
x √(1-y²) /√(1-x²) ] + m² y
= 0 as the terms cancel out.
Hence proved.
kvnmurty:
click on red heart thanks above
Similar questions