if x=sint and y= sinpt then prove that(1-y2)d2y/dx2 - x dy/dx + p2y= 0
Answers
Answered by
6
There is a mistake in the qn. typing error..
To prove that LHS= (1-x²) d²y/dx² + x dy/dx + m² y = 0 RHS
x = sin t, dx/dt = cos t = √(1-x²)
y = sin pt, dy/dt = p cos pt = p √(1-y²)
=> dy/dx = dx/dt ÷ dx/dt
= p cos(pt) / cos t = p √(1-y²) / √(1-x²)
=> d²y/dx² = d/dx [dy/dx]
= p [ √(1-x²) * {-y/√(1-y²)} * dy/dx - √(1-y²) {-x/√(1-x²) } ] / (1-x²)
= - p² y / (1-x²) + p x √(1-y²) / (1-x²)³/²
(substituting the value of dy/dx)...
LHS= (1-x²) d²y/dx² + x dy/dx + m² y
= [ - p² y + p x √(1-y²) /√(1-x²) ] + [ p x √(1-y²) /√(1-x²) ] + p² y
= 0 as the terms cancel out.
Hence proved.
To prove that LHS= (1-x²) d²y/dx² + x dy/dx + m² y = 0 RHS
x = sin t, dx/dt = cos t = √(1-x²)
y = sin pt, dy/dt = p cos pt = p √(1-y²)
=> dy/dx = dx/dt ÷ dx/dt
= p cos(pt) / cos t = p √(1-y²) / √(1-x²)
=> d²y/dx² = d/dx [dy/dx]
= p [ √(1-x²) * {-y/√(1-y²)} * dy/dx - √(1-y²) {-x/√(1-x²) } ] / (1-x²)
= - p² y / (1-x²) + p x √(1-y²) / (1-x²)³/²
(substituting the value of dy/dx)...
LHS= (1-x²) d²y/dx² + x dy/dx + m² y
= [ - p² y + p x √(1-y²) /√(1-x²) ] + [ p x √(1-y²) /√(1-x²) ] + p² y
= 0 as the terms cancel out.
Hence proved.
kvnmurty:
click on red heart thanks above pls
Similar questions
English,
8 months ago
CBSE BOARD X,
8 months ago
Computer Science,
8 months ago
Social Sciences,
1 year ago
Chemistry,
1 year ago
Math,
1 year ago
French,
1 year ago
Science,
1 year ago