PROVE THAT sin11xsinx+sin7xsin3x divided by cos11xsinx+cos7xsin3x= tan 8x
Answers
Answered by
5
The pic below helps u plz have a look at it
Attachments:
Answered by
5
LHS = (sin11x. sinx +sin7x .sin3x)/(cos11x.sinx +cos7x.sin3x)
use formula ,
2sinA.sinB = cos(A-B)-cos(A+B)
2sinA.cosB =sin(A+B)+sin(A-B)
now,
=(cos10x -cos12x +cos4x -cos10x)/(sin12x- sin10x + sin10x -sin4x)
=(cos4x -cos12x)/(sin12x -sin4x)
=2sin8x.sin4x/2cos8x.sin4x
=tan4x = RHS
use formula ,
2sinA.sinB = cos(A-B)-cos(A+B)
2sinA.cosB =sin(A+B)+sin(A-B)
now,
=(cos10x -cos12x +cos4x -cos10x)/(sin12x- sin10x + sin10x -sin4x)
=(cos4x -cos12x)/(sin12x -sin4x)
=2sin8x.sin4x/2cos8x.sin4x
=tan4x = RHS
Similar questions
Math,
8 months ago
Accountancy,
8 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago
French,
1 year ago