Math, asked by achirc6509, 1 year ago

If \( x\sqrt{1+y} +y\sqrt{1+x}=0, \: find \:\large \frac{dy}{dx} \)

Answers

Answered by mathdude500
1

Question:

\sf \: If \: x \sqrt{1 + y}  + y \sqrt{1 + x}  = 0, \: find \: \dfrac{dy}{dx} \\  \\

Answer:

\boxed{\sf \: \: \sf \: \dfrac{dy}{dx} = \dfrac{ - 1}{ {(x + 1)}^{2} }  \: } \\  \\

Step-by-step explanation:

Given that,

\sf \: x \sqrt{1 + y}  + y \sqrt{1 + x}  = 0 \\  \\

\sf \: x \sqrt{1 + y} =  -  y \sqrt{1 + x} \\  \\

On squaring both sides, we get

\sf \: (x \sqrt{1 + y})^{2}  =  (-  y \sqrt{1 + x})^{2}  \\  \\

\sf \:  {x}^{2}(1 + y) =  {y}^{2}(1 + x) \\  \\

\sf \:  {x}^{2} + y {x}^{2}  =  {y}^{2} + x {y}^{2}  \\  \\

\sf \:  {x}^{2} - {y}^{2}  =  x {y}^{2} -  {x}^{2}y   \\  \\

\sf \:  (x + y)(x - y)= xy(y - x)   \\  \\

\sf \:  (x + y)(x - y)=  - xy(x - y)   \\  \\

\sf \: x + y=  - xy   \\  \\

\sf \: x=  - xy - y   \\  \\

\sf \: x=   - y(x + 1)   \\  \\

\sf \: y =  -  \: \dfrac{x}{x + 1}  \\  \\

On differentiating both sides w. r. t. x, we get

\sf \: \dfrac{d}{dx} y =\dfrac{d}{dx}\left( \dfrac{ - x}{x + 1}\right)  \\  \\

\sf \: \dfrac{dy}{dx} = \dfrac{(x + 1)\dfrac{d}{dx}( - x) - ( - x)\dfrac{d}{dx}(x + 1)}{ {(x + 1)}^{2} }  \\  \\

\sf \: \dfrac{dy}{dx} = \dfrac{(x + 1)( - 1)  + x(1 + 0)}{ {(x + 1)}^{2} }  \\  \\

\sf \: \dfrac{dy}{dx} = \dfrac{ - x - 1  + x}{ {(x + 1)}^{2} }  \\  \\

\implies\sf \: \sf \: \dfrac{dy}{dx} = \dfrac{ - 1}{ {(x + 1)}^{2} }  \\  \\

\rule{190pt}{2pt}

Formulae used:

\sf \: \dfrac{d}{dx}\dfrac{u}{v}  = \dfrac{u\dfrac{d}{dx}v - v\dfrac{d}{dx}u}{ {v}^{2} }  \\  \\

\sf \: \dfrac{d}{dx}x = 1 \\  \\

\sf \: \dfrac{d}{dx}k = 0\\  \\

Similar questions