Math, asked by ashamahesh35, 1 year ago

if X square + 1 by x square equals to 23 then find the value of x cube + 1 by x cube​

Answers

Answered by praneethks
43

Step-by-step explanation:

 {x}^{2} +  \frac{1}{ {x}^{2}} = 23 =  >  {x}^{2} +  \frac{1}{ {x}^{2} } + 2.x. \frac{1}{x}  =

25 =  >  {(x +  \frac{1}{x})}^{2} = 25 =  > (x +  \frac{1}{x}) =

5

  {x}^3 +  {y}^{3} = (x + y)( {x}^{2} +  {y}^{2} - xy)

 {x}^{3} +  \frac{1}{ {x}^{3} } = >  (x +  \frac{1}{x})( {x}^{2} +  \frac{1}{ {x}^{2} } - x. \frac{1}{x})

 =  > 5(23 - 1) =  > 110

Hope it helps you.

Answered by JeanaShupp
24

The value of x^3+\dfrac{1}{x^3} is 110.

 Explanation:

Given :   x^2+\dfrac{1}{x^2}=23

Consider :  

(x+\dfrac{1}{x})^2=x^2+(\dfrac{1}{x})^2+2(x)(\dfrac{1}{x})

    [∵ (a+b)²= a²+b²+2ab]

=x^2+\dfrac{1}{x^2}+2



=23+2=25                  (Substitute value of   x^2+\dfrac{1}{x^2}=23)

\Rightarrow\ (x+\dfrac{1}{x})^2=25\\\\\Rightarrow\ (x+\dfrac{1}{x})=\sqrt{25}=5

Consider : x^3+\dfrac{1}{x^3}=(x+\dfrac{1}{x})(x^2+\dfrac{1}{x^2}-x(\dfrac{1}{x}))   [∵ a³+b³=(a+b)(a²+b²-ab)]

=(5)(23-1)=5(22)=110  (Substitute value of   x^2+\dfrac{1}{x^2}=23 and x+\dfrac{1}{x}=5)

Hence, the value of x^3+\dfrac{1}{x^3} is 110.

# Learn more :

If a + b is equals to 3 and a square + b square is equal to 40 find the value of a cube plus b cube​

https://brainly.in/question/10753153

Similar questions