Math, asked by vjindha, 4 months ago

if x square + 1/ x square = 23 , then find the value of x + 1/x cube​

Answers

Answered by pubgclasher667
0

Step-by-step explanation:

2

+

x

2

1

=23=>x

2

+

x

2

1

+2.x.

x

1

=

25 = > {(x + \frac{1}{x})}^{2} = 25 = > (x + \frac{1}{x}) =25=>(x+

x

1

)

2

=25=>(x+

x

1

)=

55

{x}^3 + {y}^{3} = (x + y)( {x}^{2} + {y}^{2} - xy)x

3

+y

3

=(x+y)(x

2

+y

2

−xy)

{x}^{3} + \frac{1}{ {x}^{3} } = > (x + \frac{1}{x})( {x}^{2} + \frac{1}{ {x}^{2} } - x. \frac{1}{x})x

3

+

x

3

1

=>(x+

x

1

)(x

2

+

x

2

1

−x.

x

1

)

= > 5(23 - 1) = > 110=>5(23−1)=>110

Hope it helps you.

Similar questions