if x square + 1/ x square = 23 , then find the value of x + 1/x cube
Answers
Answered by
0
Step-by-step explanation:
2
+
x
2
1
=23=>x
2
+
x
2
1
+2.x.
x
1
=
25 = > {(x + \frac{1}{x})}^{2} = 25 = > (x + \frac{1}{x}) =25=>(x+
x
1
)
2
=25=>(x+
x
1
)=
55
{x}^3 + {y}^{3} = (x + y)( {x}^{2} + {y}^{2} - xy)x
3
+y
3
=(x+y)(x
2
+y
2
−xy)
{x}^{3} + \frac{1}{ {x}^{3} } = > (x + \frac{1}{x})( {x}^{2} + \frac{1}{ {x}^{2} } - x. \frac{1}{x})x
3
+
x
3
1
=>(x+
x
1
)(x
2
+
x
2
1
−x.
x
1
)
= > 5(23 - 1) = > 110=>5(23−1)=>110
Hope it helps you.
Similar questions