Math, asked by elizabethblessy, 1 year ago

if x square =11 +2 root 30, find x+1 by x​

Answers

Answered by LovelyG
14

Answer:

\large{\underline{\boxed{\sf x +  \frac{1}{x}  = 2 \sqrt{6}}}}

Step-by-step explanation:

Given that -

x² = 11 + 2√30

  \implies \tt \frac{1}{x {}^{2} }  =  \frac{1}{11 + 2 \sqrt{30} }  \\  \\ \implies \tt  \frac{1}{ {x}^{2} }  =  \frac{1}{11 + 2 \sqrt{30} }  \times  \frac{11 - 2 \sqrt{30} }{11 - 2 \sqrt{30} }  \\  \\  \implies \tt  \frac{1}{ {x}^{2} }  =  \frac{11 - 2 \sqrt{30} }{(11) {}^{2}  - (2 \sqrt{30}) {}^{2}}  \\  \\  \implies \tt  \frac{1}{ {x}^{2} }  =  \frac{11 - 2 \sqrt{30} }{121 - 120}  \\  \\  \implies \tt  \frac{1}{x {}^{2} }  = 11 - 2 \sqrt{30}

Now,

 \implies \tt x {}^{2}  +  \frac{1}{ {x}^{2} }  = 11 + 2 \sqrt{30}  + 11 - 2 \sqrt{30}  \\  \\  \implies \tt  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 11 + 11 \\  \\ \implies \tt  {x}^{2}  +  \frac{1}{ {x}^{2} }  =22

Adding 2 both the sides-

\implies \tt  {x}^{2}  +  \frac{1}{ {x}^{2} }   + 2 = 22 + 2 \\  \\ \implies \tt  {x}^{2}  +  \frac{1}{ {x}^{2} }   + 2 \: . \: x \:  .\:  \frac{1}{x}  = 24 \\  \\ \implies \tt  ( x+  \frac{1}{x}) {}^{2} =24  \\  \\ \implies \tt x +  \frac{1}{x}  =  \sqrt{24}  \\  \\ \boxed{ \bf \therefore  x +  \frac{1}{x}  = 2 \sqrt{6} }

Answered by ravikrishnaperugu
3

Answer:

(X+1)/X=(√6+√5+1)/( √5+√6)

Step-by-step explanation

X2=11+2√ 30

X=√ (11+√ 30)

X=√ ((√ 6)2+ (√ 5)2+ (2×√ 6×√ 5))

X=√6+√5

THEN (X+1)/X=(√6+√5+1)/( √5+√6)

Similar questions