if X square + X + 1 is equal to zero then find the value of x cube
Answers
GIVEN :
The quadratic equation
TO FIND :
The value of the expression
SOLUTION :
Given that the quadratic equation is
Now we have to find the value of x from the given quadratic equation
For a quadratic equation
, where a and b are the coefficients of and x respectively and c is a constant.
Here a=1 ,b=1 and c=1
Substitute in the formula we get,
(by )
∴ and
Now we have to find for
Put
By using the property of exponent:
By using the algebraic identity
∴ for
Now we have to find for
Put
By using the algebraic identity
∴ for
∴ the value of for and for
Answer:
GIVEN :
The quadratic equation x^2+x+1=0x
2
+x+1=0
TO FIND :
The value of the expression x^3x
3
SOLUTION :
Given that the quadratic equation is x^2+x+1=0x
2
+x+1=0
Now we have to find the value of x from the given quadratic equation x^2+x+1=0x
2
+x+1=0
For a quadratic equation ax^2+bx+c=0ax
2
+bx+c=0
x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}x=
2a
−b±
b
2
−4ac
, where a and b are the coefficients of x^2x
2
and x respectively and c is a constant.
Here a=1 ,b=1 and c=1
Substitute in the formula we get,
x=\frac{-1\pm \sqrt{1^2-4(1)(1)}}{2(1)}x=
2(1)
−1±
1
2
−4(1)(1)
=\frac{-1\pm \sqrt{1-4}}{2}=
2
−1±
1−4
=\frac{-1\pm \sqrt{-3}}{2}=
2
−1±
−3
=\frac{-1\pm \sqrt{3i^2}}{2}=
2
−1±
3i
2
(by i^2=-1i
2
=−1 )
=\frac{-1\pm i\sqrt{3}}{2}=
2
−1±i
3
∴ x=\frac{-1+i\sqrt{3}}{2}x=
2
−1+i
3
and x=\frac{-1-i\sqrt{3}}{2}x=
2
−1−i
3
Now we have to find x^3x
3
for x=\frac{-1+i\sqrt{3}}{2}x=
2
−1+i
3
Put x=\frac{-1+i\sqrt{3}}{2}x=
2
−1+i
3
x^3=(\frac{-1+i\sqrt{3}}{2})^3x
3
=(
2
−1+i
3
)
3
By using the property of exponent:
(\frac{a}{b})^m=\frac{a^m}{b^m}(
b
a
)
m
=
b
m
a
m
=\frac{(-1+i\sqrt{3})^3}{2^3}=
2
3
(−1+i
3
)
3
By using the algebraic identity
(a+b)^3=a^3+3a^2b+3ab^2+b^3(a+b)
3
=a
3
+3a
2
b+3ab
2
+b
3
=\frac{-1^3+3(-1)^2(i\sqrt{3})+3(-1)(i\sqrt{3})^2+(i\sqrt{3})^3}{8}=
8
−1
3
+3(−1)
2
(i
3
)+3(−1)(i
3
)
2
+(i
3
)
3
=\frac{-1+3i\sqrt{3}+9-i3\sqrt{3}}{8}=
8
−1+3i
3
+9−i3
3
=\frac{-1+9}{8}=
8
−1+9
=\frac{8}{8}=
8
8
=1=1
∴ x^3=1x
3
=1 for x=\frac{-1+i\sqrt{3}}{2}x=
2
−1+i
3
Now we have to find x^3x
3
for x=\frac{-1-i\sqrt{3}}{2}x=
2
−1−i
3
Put x=\frac{-1-i\sqrt{3}}{2}x=
2
−1−i
3
x^3=(\frac{-1-i\sqrt{3}}{2})^3x
3
=(
2
−1−i
3
)
3
=\frac{(-1-i\sqrt{3})^3}{2^3}=
2
3
(−1−i
3
)
3
By using the algebraic identity
(a-b)^3=a^3-3a^2b+3ab^2-b^3(a−b)
3
=a
3
−3a
2
b+3ab
2
−b
3
=\frac{-1^3+3(-1)^2(-i\sqrt{3})+3(-1)(-i\sqrt{3})^2+(-i\sqrt{3})^3}{8}=
8
−1
3
+3(−1)
2
(−i
3
)+3(−1)(−i
3
)
2
+(−i
3
)
3
=\frac{-1-3i\sqrt{3}+9+i3\sqrt{3}}{8}=
8
−1−3i
3
+9+i3
3
=\frac{-1+9}{8}=
8
−1+9
=\frac{8}{8}=
8
8
=1=1
∴ x^3=1x
3
=1 for x=\frac{-1-i\sqrt{3}}{2}x=
2
−1−i
3
∴ the value of x^3=1x
3
=1 for x=\frac{-1+i\sqrt{3}}{2}x=
2
−1+i
3
and x^3=1x
3
=1 for x=\frac{-1-i\sqrt{3}}{2}x=
2
−1−i
3