Math, asked by rahmanbajubare23, 1 year ago

If x square+y square=7xy then show that 2log(x+y)=logx+logy+2log3

Answers

Answered by Anonymous
45
\underline{\underline{\Large{\mathfrak{Solution :}}}}



<br />\underline{\mathsf{Given \longrightarrow x^2 \:+ \: y^2 \: = \: 7xy }}



\textsf{Add 2xy to both sides : }



\sf \implies x^2 \: + \: y^2 \: + \: 2xy \: = \: 7xy \: + \: 2xy \\ \\ \sf \implies (x \: + \: y )^2 \: = \: 9xy



\textsf{Applying Logarithm : }



\sf \implies log \: (x \: + \: y)^{2} \: = \: log \: 9xy \\ \\ \\ \sf \implies 2 \: log \: (x \: + \: y) \: = \: log \: ( 9 \: \cdot \:x \cdot y) \\ \\ \\ \sf \implies 2 \:log \: (x \: + \: y) \: = \: log \: 9 \: + \: log \: x \: + \: log \: y \\ \\ \\ \sf \implies 2 \: log \: (x \: + \: y) \: = \: log \: {3}^{2} \: + \: log \: x \: + \: log \: y \\ \\ \\ \sf \implies 2 \: log \: (x \: + \: y) \: = \: 2 \: log \: 3 \: + \: log \: x \: + \: log \: y \\ \\ \\ \sf \therefore \quad \: 2 \: log \: (x \: + \: y) \: = \: log \: x \: + \: log \: y \: + \: 2 \: log \: 3



\underline{\textsf{Algebraic identity used : }} \\ \\<br />\sf \implies a^2 \: + \: b^2 \: + \: 2ab \: = \: ( a \: + \: b )^2



\underline{\textsf{Logarithm rules used : }} \\ <br />\\ \mathsf{ \implies log_{a} \: bc \: = \: log_{a} \: b \: + \: log_{a} \: c} \\ \\ \mathsf{ \implies log_{a} \: b^c \: = \: c \: log_{a} \: b }
Answered by chopraneetu
14
LHS=2log(x+y)
 =  log( {x + y)}^{2} \\  =  log( {x}^{2} +  +  {y}^{2} + 2xy  ) \\  =  log(7xy + 2xy)   \\  =  log(9xy)  \\  =  logx +  logy +  log9 \\    = logx +  logy +  log {3}^{2}  \\  = logx +  logy + 2 log3
Similar questions