Physics, asked by prakashkanchan2003, 4 months ago

if x=t³+3t²-2t+2 find distance velocity and acceleration in 1 second​

Answers

Answered by duragpalsingh
11

Given,

Displacement varies with the equation,

x = t³ + 3t² - 2t + 2

Distance at t = 1,

x = 1 + 3*1 - 2*1 + 2

x = 6 - 2 = 4

So, distance at t = 1 is 4 m.

Velocity is rate of change of dispalcement.

v = d(t³ + 3t² - 2t + 2) / dx

v = 3t² + 6t - 2

at, t = 1, velocity = 3*1 + 6*1 - 2 = 3 + 6 - 2 = 7 m/s

Therefore, at t = 1, velocity = 7 m/s

Acceleration is rate of change of velocity.

or, a = dv / dt

or, a = d (3t² + 6t - 2) / t

or, a = 6t + 6

at t = 1, acceleration = 6*1 + 6 = 12 m/s²

Answered by VishnuPriya2801
28

Answer:-

Given:-

x = t³ + 3t² - 2t + 2

We have to find;

Distance , Velocity and Acceleration at t = 1 s.

Substitute t = 1 to find the distance.

⟹ x = (1)³ + 3(1)² - 2(1) + 2

⟹ x = 1 + 3 - 2 + 2

⟹ x = 4 m

Now,

Differentiate x with respect to t to find the velocity.

 \implies \sf \: velocity(v) =  \dfrac{dx}{dt}  \\  \\  \\  \implies \sf \:v =  \frac{d( {t}^{3}  + 3 {t}^{2}  - 2t + 2)}{t}  \\  \\  \\ \implies \sf \:v = 3   {t}^{3 - 1}  + 2 \times 3 {t}^{2 - 1}  - 1 \times 2 {t}^{1 - 1}  + 0 \\  \\  \\  \bigg( \because \sf \frac{d(constant)}{dx}  = 0 \:   \: \& \:  \:  \frac{d( {x})^{n} }{dx}  = n \times  {x}^{n - 1}  \bigg) \\  \\  \\ \implies \sf \:v = 3 {t}^{2}  + 6t - 2 \\  \\  \\ \implies \sf \:v = 3 {(1)}^{2}  + 6(1) - 2 \\  \\  \\ \implies \sf \:v = 3 + 6 - 2 \\  \\  \\ \implies \boxed{ \sf \:v = 7 \: m {s}^{ - 1} } \\  \\

Now,

Differentiate v = 3t² + 6t - 2 with respect to t to find the acceleration.

  \implies\sf \: acceleration(a) =  \frac{d(v)}{dt}  \\  \\  \\  \implies\sf \:a =  \frac{d( 3{t}^{2}  + 6t - 2)}{dt}  \\  \\  \\ \implies\sf \:a =2 \times 3 {t}^{2 - 1}  + 1 \times 6 {(t)}^{1 - 1}  - 0 \\  \\  \\ \implies\sf \:a =6t + 6 \\  \\  \\ \implies\sf \:a =6(1) + 6 \\  \\  \\ \implies \boxed{\sf \:a =12 \: ms ^{ - 2} } \\  \\

  • Distance travelled is 4 m
  • Velocity is 7 m/s.
  • Acceleration is 12 m/.
Similar questions