Math, asked by sarithabathulla, 2 months ago

if x = tanA - tanB , y = cotB - cotA then 1/x + 1/y is​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x = tanA  -  tanB

We know that,

\boxed{ \rm{ tanx =  \frac{1}{cotx}}}

Using this,

can be rewritten as

\rm :\longmapsto\:x = \dfrac{1}{cotA} - \dfrac{1}{cotB}

\rm :\longmapsto\:x = \dfrac{cotB - cotA}{cotA \: cotB}

and

\rm :\longmapsto\:y \:  =  \: cotB - cotA

Now,

Consider,

\rm :\longmapsto\:\dfrac{1}{x} +  \dfrac{1}{y}

On substituting the values of x and y, we get

\rm \:  =  \:  \: \dfrac{cotAcotB}{cotB - cotA}  +  \dfrac{1}{cotB - cotA}

\rm \:  =  \:  \: \dfrac{cotAcotB  + 1}{cotB - cotA}

\rm \:  =  \:  \: cotA - cotB

Hence,

\bf :\longmapsto\:\dfrac{1}{x} +  \dfrac{1}{y}  = cotA - cotB

Additional Information :-

 \boxed{ \rm{ cot(x + y) =  \frac{cotxcoty - 1}{coty + cotx}}}

 \boxed{ \rm{ cot(x  -  y) =  \frac{cotxcoty  +  1}{coty - cotx}}}

\boxed{ \rm{ tan(x + y) =  \frac{tanx + tany}{1 - tanxtany}}}

\boxed{ \rm{ tan(x  -  y) =  \frac{tanx  -  tany}{1  +  tanxtany}}}

\boxed{ \rm{ sin(x + y) = sinxcosy + sinycosx}}

\boxed{ \rm{ sin(x  -  y) = sinxcosy  -  sinycosx}}

\boxed{ \rm{ cos(x + y) = cosxcosy - sinxsiny}}

\boxed{ \rm{ cos(x  -  y) = cosxcosy  +  sinxsiny}}

\boxed{ \rm{  {sin}^{2}x -  {sin}^{2}y = sin(x + y)sin(x - y)}}

\boxed{ \rm{  {cos}^{2}x -  {sin}^{2}y = cos(x + y)cos(x - y)}}

Similar questions