Math, asked by sinchanag84, 2 months ago

If x = ↓
1 +  \sqrt{2}
then find the value of the expression ↓
x {}^{4}  - \: x {}^{3}  -  \:  2{x}^{2}  - 3x + 1

Answers

Answered by varadad25
9

Answer:

\displaystyle{\boxed{\red{\sf\:x^4\:-\:x^3\:-\:2x^2\:-\:3x\:+\:1\:=\:2\:}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:x\:=\:1\:+\:\sqrt{2}}

We have to find the value of

\displaystyle{\sf\:x^4\:-\:x^3\:-\:2x^2\:-\:3x\:+\:1}

Now,

\displaystyle{\sf\:x^4\:-\:x^3\:-\:2x^2\:-\:3x\:+\:1}

\displaystyle{\implies\sf\:x\:(\:x^3\:-\:x^2\:-\:2x\:-\:3\:)\:+\:1}

\displaystyle{\implies\sf\:x\:[\:x\:(\:x^2\:-\:x\:-\:2\:-\:3\:)\:]\:+\:1}

\displaystyle{\implies\sf\:x\:[\:x\:(\:x^2\:-\:2x\:+\:x\:-\:2\:)\:-\:3\:]\:+\:1}

\displaystyle{\implies\sf\:x\:[\:x\:(\:x\:-\:2\:)\:+\:1\:(\:x\:-\:2\:)\:-\:3\:]\:+\:1}

\displaystyle{\implies\sf\:x\:[\:(\:x\:-\:2\:)\:(\:x\:+\:1\:)\:-\:3\:]\:+\:1}

\displaystyle{\implies\sf\:(\:1\:+\:\sqrt{2}\:)\:[\:(\:1\:+\:\sqrt{2}\:)\:(\:1\:+\:\sqrt{2}\:-\:2\:)\:(\:1\:+\:\sqrt{2}\:+\:1\:)\:-\:3\:]\:+\:1}

\displaystyle{\implies\sf\:(\:1\:+\:\sqrt{2}\:)\:[\:(\:1\:+\:\sqrt{2}\:)\:(\:-1\:+\:\sqrt{2}\:)\:(\:2\:+\:\sqrt{2}\:)\:-\:3\:]\:+\:1}

\displaystyle{\implies\sf\:(\:1\:+\:\sqrt{2}\:)\:[\:(\:\sqrt{2}\:-\:1\:)\:(\:\sqrt{2}\:+\:1\:)\:(\:\sqrt{2}\:+\:2\:)\:-\:3\:]\:+\:1}

\displaystyle{\implies\sf\:(\:1\:+\:\sqrt{2}\:)\:[\:(\:\sqrt{2}^2\:-\:1^2\:)\:(\:\sqrt{2}\:+\:2\:)\:-\:3\:]\:+\:1}

\displaystyle{\implies\sf\:(\:1\:+\:\sqrt{2}\:)\:[\:(\:2\:-\:1\:)\:(\:2\:+\:\sqrt{2}\:)\:-\:3\:]\:+\:1}

\displaystyle{\implies\sf\:(\:1\:+\:\sqrt{2}\:)\:[\:1\:\times\:(\:2\:+\:\sqrt{2}\:)\:-\:3\:]\:+\:1}

\displaystyle{\implies\sf\:(\:1\:+\:\sqrt{2}\:)\:[\:(\:2\:+\:\sqrt{2}\:)\:-\:3\:]\:+\:1}

\displaystyle{\implies\sf\:(\:1\:+\:\sqrt{2}\:)\:(\:2\:+\:\sqrt{2}\:-\:3\:)\:+\:1}

\displaystyle{\implies\sf\:(\:1\:+\:\sqrt{2}\:)\:(\:-\:1\:+\:\sqrt{2}\:)\:+\:1}

\displaystyle{\implies\sf\:(\:\sqrt{2}\:)^2\:-\:1^2\:+\:1}

\displaystyle{\implies\sf\:2\:-\:1\:+\:1}

\displaystyle{\implies\sf\:2\:+\:0}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:x^4\:-\:x^3\:-\:2x^2\:-\:3x\:+\:1\:=\:2\:}}}}

Answered by jaswasri2006
11

x⁴ - x³ - 2x² - 3x + 1

x = 1+√2

x² + x² - x³ - 2x² - 3x + 1

after simplifying ,

3x² - 4x + 1

then ,

3 + 6 - 4 - 4√2 + 1 = 6 - 4√2

Similar questions