Math, asked by priyanga2611, 11 months ago


If x=
 \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }


, find the value of
2 {x}^{2}  - 7x + 5

Answers

Answered by mysticd
1

Answer:

 \red {Value \:of \:2x^{2}-7x+5}

\green {= 147 - 84\sqrt{3}}

\green {= 7(21-12\sqrt{3})}

Step-by-step explanation:

 Given \: x = \frac{2-\sqrt{3}}{2+\sqrt{3}}

 \implies x = \frac{(2-\sqrt{3})}{(2+\sqrt{3})}\times  \frac{(2-\sqrt{3})}{(2-\sqrt{3})}

 = \frac{(2-\sqrt{3})^{2}}{2^{2} - (\sqrt{3})^{2}}

 = \frac{ 2^{2} + (\sqrt{3})^{2} - 2\times 2\times \sqrt{3} }{4-3}\\= \frac{4+3-4\sqrt{3}}{1}\\= 7-4\sqrt{3}\:--(1)

 Now , \: Value \:of \:2x^{2}-7x+5\\=2(7-4\sqrt{3})^{2} -7(7-4\sqrt{3})+5 \:[from \:(1)]

 = 2(49+48-56\sqrt{3} )- 49 + 28\sqrt{3} + 5\\=2(97-56\sqrt{3}) - 47+28\sqrt{3}\\= 194 - 112\sqrt{3}-47+28\sqrt{3}\\= 147 - 84\sqrt{3}\\= 7(21-12\sqrt{3})

Therefore.,

 \red {Value \:of \:2x^{2}-7x+5}

\green {= 147 - 84\sqrt{3}}

\green {= 7(21-12\sqrt{3})}

•••♪

Similar questions