If x =
Answers
Answered by
8
Answer :
x³ + 1/x³ = 4
Solution :
- Given : x = (2 + √3)^⅓
- To find : x³ + 1/x³ = ?
We have ,
=> x = (2 + √3)^⅓
=> x³ = 2 + √3
Thus ,
1/x³ = 1/(2 + √3)
Now ,
Rationalising the denominator of the term in RHS , we get ;
=> 1/x³ = (2 - √3)/(2 + √3)(2 - √3)
=> 1/x³ = (2 - √3)/[2² - (√3)²]
=> 1/x³ = (2 - √3)/(4 - 3)
=> 1/x³ = (2 - √3)/1
=> 1/x³ = 2 - √3
Now ,
=> x³ + 1/x³ = 2 + √3 + 2 - √3
=> x³ + 1/x³ = 4
Hence ,
x³ + 1/x³ = 4
Similar questions
Math,
2 months ago
Social Sciences,
2 months ago
English,
2 months ago
Art,
5 months ago
Computer Science,
5 months ago
Math,
11 months ago
English,
11 months ago
English,
11 months ago