Physics, asked by suchitababerwal633, 16 days ago

If X=
 \sqrt{ \alpha t +  \beta }
Find acceleration in terms of displacement(X) and velocity(V)​

Answers

Answered by IamIronMan0
5

Answer:

  \huge\orange{ \frac{ -  \alpha v}{ \:  \:  \: 2 {x}^{2} } }

Explanation:

Given

x =  \sqrt{ \alpha t +  \beta }

Differentiate wrt t

v =  \frac{dx}{dt}  =  \frac{ \alpha }{2 \sqrt{ \alpha t +  \beta } }  \\  \\   \implies \: v =  \frac{ \alpha }{2x}

Now acceleration

a = v \frac{dv}{dx}  \\  \\ \implies \: a = v \frac{d}{dx} ( \frac{ \alpha }{2x} ) = v \frac{ -  \alpha }{2 {x}^{2} }

Answered by geniusranksinghmohan
1

Explanation:

given :

  • If X=
  •  \sqrt{ \alpha t + \beta }
  • Find acceleration in terms of displacement(X) and velocity(V)

to find :

  • Find acceleration in terms of displacement(X) and velocity(V)

solution :

  • velocity = dx/dt = a/ 2√at + B

  • velocity = a/2 x

  • a = dv/dx

  • a= velocity d/dx ( a/2x) = velocity - a/ 2x
Similar questions