Math, asked by ratnarupa, 4 months ago

if x varies inversely with y then
prove that the minimum value of (x+y) is constant if x=y

Answers

Answered by Swarup1998
1

Given data:

\mathsf{x} varies inversely with \mathsf{y}

To prove:

\mathsf{(x+y)_{min}=constant} if \mathsf{x=y}

Step-by-step explanation:

Given, \mathsf{x\propto \frac{1}{y}}

\mathsf{\Rightarrow x=\frac{k}{y}} where \mathsf{k} is constant

\mathsf{\Rightarrow xy=k}

\mathsf{\Rightarrow x\times x=k} when \mathsf{x=y}

\mathsf{\Rightarrow x^{2}=k}

\mathsf{\Rightarrow x=\sqrt{k}}

Then \mathsf{y=\sqrt{k}}

Now, \mathsf{x+y=\sqrt{k}+\sqrt{k}}

\mathsf{\Rightarrow x+y=2\sqrt{k}}, a constant

Answer:

The minimum value of \mathsf{(x+y)} is constant.

Hence, proved.

Another method.

We can prove the problem using

\mathsf{\quad A.M.\geq G.M.}

\mathsf{\Rightarrow \frac{x+y}{2}\geq \sqrt{xy}}

\mathsf{\Rightarrow \frac{x+y}{2}\geq \sqrt{k}} since \mathsf{xy=k}

\mathsf{\Rightarrow x+y\geq 2\sqrt{k}}

Here \mathsf{k} being a constant, \mathsf{2\sqrt{k}} is also a constant.

\mathsf{\therefore} the minimum value of \mathsf{(x+y)} is constant.

Similar questions