If (x) :xcube+ 3xcube-2x+4 find the value of p(-2)+p(1)+p(0) ?
Answers
Answered by
7
Correct Question :
If p(x) = x³ + 3x² - 2x + 4 , then find the value of p(-2) + p(1) + p(0) .
Answér :
p(-2) + p(1) + p(0) = 22
Solution :
- Given : p(x) = x³ + 3x² - 2x + 4
- To find : p(-2) + p(1) + p(0) = ?
We have ;
p(x) = x³ + 3x² - 2x + 4
Thus ,
=> p(-2) = (-2)³ + 3•(-2)² - 2•(-2) + 4
=> p(-2) = -8 + 12 + 4 + 4
=> p(-2) = 12
Also ,
=> p(1) = 1³ + 3•1² - 2•1 + 4
=> p(1) = 1 + 3 - 2 + 4
=> p(1) = 6
Also ,
=> p(0) = 0³ + 3•0² - 2•0 + 4
=> p(0) = 0 + 0 - 0 + 4
=> p(0) = 4
Now ,
=> p(-2) + p(1) + p(0) = 12 + 6 + 4
=> p(-2) + p(1) + p(0) = 22
Hence ,
p(-2) + p(1) + p(0) = 22
Answered by
19
Añswering àçcordìng to givén quéstion :
-14
Solution :
Given ,
- p(x) = x³ + 3x³ - 2x + 4
Upon simplifying p(x) we get
- p(x) = 4x³ - 2x + 4
Required to find :
- p(-2) + p(1) + p(0) = ?
Finding p(-2)
- Put x = -2 in p(x)
- p(-2) = 4(-2)³ -2(-2)+4
- p(-2) = -32 + 4 + 4
- p(-2) = - 24
Finding p(1)
- Put x = 1 in p(x)
- p(1) = 4(1)³-2(1)+4
- p(1) = 4 -2 + 4
- p(1) = 6
Finding p(0)
- Put x=0 in p(x)
- p(0) = 4(0)³ -2(0) +4
- p(0) = 4
Finding the required value :
- p(-2) + p(1) + p(0)
Substitute all the values that have been simplified above
- -24 + 6 + 4
- -24 + 10
- -14
Therefore the required value
p(-2) + p(1) + p(0) is -14
Note : Quéstìon cãn never be incorrect , unless you have misinterpreted it !
Similar questions