Math, asked by mathewalexalex5259, 9 months ago

If (x) :xcube+ 3xcube-2x+4 find the value of p(-2)+p(1)+p(0) ?

Answers

Answered by AlluringNightingale
7

Correct Question :

If p(x) = x³ + 3x² - 2x + 4 , then find the value of p(-2) + p(1) + p(0) .

Answér :

p(-2) + p(1) + p(0) = 22

Solution :

  • Given : p(x) = x³ + 3x² - 2x + 4
  • To find : p(-2) + p(1) + p(0) = ?

We have ;

p(x) = x³ + 3x² - 2x + 4

Thus ,

=> p(-2) = (-2)³ + 3•(-2)² - 2•(-2) + 4

=> p(-2) = -8 + 12 + 4 + 4

=> p(-2) = 12

Also ,

=> p(1) = 1³ + 3•1² - 2•1 + 4

=> p(1) = 1 + 3 - 2 + 4

=> p(1) = 6

Also ,

=> p(0) = 0³ + 3•0² - 2•0 + 4

=> p(0) = 0 + 0 - 0 + 4

=> p(0) = 4

Now ,

=> p(-2) + p(1) + p(0) = 12 + 6 + 4

=> p(-2) + p(1) + p(0) = 22

Hence ,

p(-2) + p(1) + p(0) = 22

Answered by Anonymous
19

Añswering àçcordìng to givén quéstion :

-14

Solution :

Given ,

  • p(x) = x³ + 3x³ - 2x + 4

Upon simplifying p(x) we get

  • p(x) = 4x³ - 2x + 4

Required to find :

  • p(-2) + p(1) + p(0) = ?

Finding p(-2)

  • Put x = -2 in p(x)
  • p(-2) = 4(-2)³ -2(-2)+4
  • p(-2) = -32 + 4 + 4
  • p(-2) = - 24

Finding p(1)

  • Put x = 1 in p(x)
  • p(1) = 4(1)³-2(1)+4
  • p(1) = 4 -2 + 4
  • p(1) = 6

Finding p(0)

  • Put x=0 in p(x)
  • p(0) = 4(0)³ -2(0) +4
  • p(0) = 4

Finding the required value :

  • p(-2) + p(1) + p(0)

Substitute all the values that have been simplified above

  • -24 + 6 + 4
  • -24 + 10
  • -14

Therefore the required value

p(-2) + p(1) + p(0) is -14

Note : Quéstìon cãn never be incorrect , unless you have misinterpreted it !

Similar questions