if x+y=1+xy , show that x3+y3=1+x3y3
Answers
Answered by
3
Required Answer:-
Given:
- x + y = 1 + xy
To Prove:
- x³ + y³ = 1 + x³y³
Proof:
We have,
➡ x + y = 1 + xy
Cubing both sides, we get,
➡ (x + y)³ = (1 + xy)³
➡ x³ + y³ + 3xy(x + y) = 1 + x³y³ + 3xy(1 + xy)
Shifting 3xy(x + y) on right side, we get,
➡ x³ + y³ = 1 + x³y³ + 3xy(1 + xy) - 3xy(x + y)
➡ x³ + y³ = 1 + x³y³ + 3xy(1 + xy - x - y)
As x + y = 1 + xy,
➡ x³ + y³ = 1 + x³y³ + 3xy(x + y - x - y)
➡ x³ + y³ = 1 + x³y³ + 3xy × 0
➡ x³ + y³ = 1 + x³y³ (Hence Proved)
Formula Used:
- (a + b)³ = a³ + 3ab(a + b) + b³
More Formulae To Know:
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- a² - b² = (a + b)(a - b)
- (a - b)³ = a³ - 3ab(a - b) - b³
Similar questions
Social Sciences,
2 months ago
Social Sciences,
5 months ago
English,
11 months ago
Computer Science,
11 months ago
Chemistry,
11 months ago