Math, asked by anithafrooti, 8 months ago

If x+y=12 and xy =14 find x 4 + y 4

Answers

Answered by Anonymous
3

Given :

  • x + y = 12
  • xy = 14

To find :

  • Value of x⁴ + y⁴

Solution :

  • x + y = 12
  • xy = 14

Now take x+y = 12 and square in both sides.

→ (x+y)² = 12²

→ x² + y² +2xy = 144

  • Put xy = 14

→ x² + y² +2×14 = 144

→ x² + y² + 28 = 144

→ x² + y² = 144-28

→ x² + y² = 116

Now , find the value of x⁴ + y⁴ .

\to\sf{x^4+y^4}

\to\sf{(x^2)^2+(y^2)^2}

  • Use identity : + = (a+b)² - 2ab

\to\sf{(x^2+y^2)^2-2x^2y^2}

  • Put values : + = 116 and xy = 14

\to\sf{(116)^2-2\times(14)^2}

\to\sf{13456-392}

\to\sf{13064}

Therefore, the value of x⁴ + y⁴ is 13064.

Similar questions