Math, asked by blacksnow, 1 year ago

if x+y=12 and xy= 27, find the value of x³+y³

Answers

Answered by ace2
2
answer is 756. x=3 y=9 .

Bhanu328: Ans=2700
ace2: no
ace2: 756 is the correct answer
Answered by amansharma264
0

EXPLANATION.

⇒ x + y = 12. - - - - - (1).

⇒ xy = 27. - - - - - (2).

As we know that,

Formula of :

⇒ (a² + b²) = (a + b)² - 2ab.

⇒ (a³ + b³) = (a + b)(a² - ab + b²).

Using this formula in the equation, we get.

⇒ (x³ + y³) = (x + y)(x² - xy + y²).

⇒ (x³ + y³) = (x + y)[x² + y² - xy].

⇒ (x³ + y³) = (x + y)[(x + y)² - 2xy - xy].

⇒ (x³ + y³) = (x + y)[(x + y)² - 3xy].

Put the values in the equation, we get.

⇒ (x³ + y³) = (12)[(12)² - 3(27)].

⇒ (x³ + y³) = (12)[144 - 81].

⇒ (x³ + y³) = (12)[63].

⇒ (x³ + y³) = 12 x 63.

(x³ + y³) = 756.

                                                                                                                       

MORE INFORMATION.

(1) (a + b)² = a² + b² + 2ab.

(2) (a - b)² = a² + b² - 2ab.

(3) (a² - b²) = (a + b)(a - b).

(4) (a² + b²) = (a + b)² - 2ab.

(5) (a³ - b³) = (a - b)(a² + ab + b²).

(6) (a³ + b³) = (a + b)(a² + ab + b²).

(7) (a + b)³ = a³ + 3a²b + 3ab² + b³.

(8) (a - b)³ = a³ - 3a²b + 3ab² - b³.

Similar questions