Math, asked by RaoJatin, 1 year ago

if x+y=12,and xy=27,findx³+y³.


with solution ​

Answers

Answered by BrainlyHulk
7

Answer:

(x + y) {}^{ 3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y) \\  \\ x + y = 12 \\ (x + y) {}^{3}  = 12 {}^{3}  \\   {x}^{3}  +  {y}^{3}  + 3xy(x + y) = 1728 \\  {x}^{3}  + y {}^{3}  = 1728 - 3xy(x + y) \\ {x}^{3}  + y {}^{3}  = 1728  - 3 \times 27(12)  = 1728 - 972 \\ {x}^{3}  + y {}^{3}  = 756

Answered by Sagar20102003
0

Answer:

270

Step-by-step explanation:

x+y=12, xy=27,x^3+y^3=?

x+y=12

x=12-y-----------1

xy=27

(12-y)y=27

12y-y^2=27

y^2-12y+27=0

y^2-9y-3y+27=0

y(y-9)-3(y-9)=0

(y-9)=0 or (y-3)=0

y=9 or y=3

if y=9 then x=3

if y=3 then x=9

x^3+y^3=(3)^3+(9)^3

=27+243

=270

Similar questions