if x+y =12 and xy=32 then find the value of xpower2 + ypower2
Answers
Answer:
given, x+y = 12 and xy = 32
(6 this is power)
Step-by-step explanation:
(x+y)^2 = x^2 + y^2 + 2xy
(12)^2 = x^2 + y^2 + 2 X 32
(144) = x^2 + y^2 + 64
144-64 = x^2 + y^2
80 = x^2 + y^2
hope it helps
mark me as the brailiest!!!
Answer:
80
Step-by-step explanation:
Given -
- x + y = 12
- xy = 32-------1
To find -
- Value of x² + y²
Solution -
→ x + y = 12
→ x = 12 - y (putting in 1)
→(12 - y)y = 32
→ 12y - y² = 32
→ y² - 12y + 32 = 0
→ y² - 8y - 4y + 32 = 0
→ y(y - 8) - 4(y - 8) = 0
→ (y - 4)(y - 8) = 0
→ y = 4 , y = 8
Case A
y = 4 (putting in 1)
→ x(4) = 32
→ x = 32/4
→ x = 8
Now, x² + y² = (8)² + (4)²
= 64 + 16
= 80
Case B
y = 8 (putting in 1)
→ x(8) = 32
→ x = 32/8
→ x = 4
Now, x² + y² = (4)² + (8)²
= 16 + 64
= 80
Therefore, the value of x² + y² is 80.