IF x + y + 2 = 0, then write the value of x3 + y3 + 8
Answers
Answered by
177
We know,
If a + b + c = 0 then, a³ + b³ + c³ = 3abc
Because a³ + b³ + c³ = 1/2(a + b + c ) (a² + b² + c² - ab - bc - ca)
Now, when a + b + c = 0 then, a³ + b³ + c³ - 3abc = 0
so, a³ + b³ + c³ = 3abc
Here, x + y + 2 = 0
so, x³ + y³ + 2³ = 3xy(2)
x³ + y³ + 8 = 6xy [ans]
If a + b + c = 0 then, a³ + b³ + c³ = 3abc
Because a³ + b³ + c³ = 1/2(a + b + c ) (a² + b² + c² - ab - bc - ca)
Now, when a + b + c = 0 then, a³ + b³ + c³ - 3abc = 0
so, a³ + b³ + c³ = 3abc
Here, x + y + 2 = 0
so, x³ + y³ + 2³ = 3xy(2)
x³ + y³ + 8 = 6xy [ans]
Answered by
42
Answer:
x³ + y³ + 8= 6xy
Step-by-step explanation:
Given x + y + 2 = 0 then
x³ + y³ + 8= (x)³+(y)³+(2)³=0
We know if a+b+c=0 then,
a³+b³+c³=3abc
x³+y³+(2)³=3×x×y×2
x³+y³+8=6xy
Similar questions