Math, asked by bidiptobose7985, 10 months ago

If x+y = 20, xy = 34, then find the value of x + y?. Solution:

Answers

Answered by kalyaniprasad8
0

x-y = √(x+y)²-4xy = √(400 - 4 x 34) = √(400 - 136) = √264 = 2√66

Answered by Anonymous
3

x + y = 20 \\  =  > x = 20 - y \\ again \\ xy = 34 \\ =  >  (20 - y)y = 34 \: (substituting \: the \: value \: of \: x) \\  =  > 20y -  {y}^{2}  - 34 = 0 \\  =  >  -  {y}^{2}  + 20y - 34 = 0 \\  =  >  {y}^{2}  - 20y +34 = 0  \\  \\  by \:using \: quadratic \: formula -  \\  x =   \frac{ - b \binom{ + }{ - }  \sqrt{ {b}^{2}   - 4ac}   }{2a}  \\ \:  \:  \:   \:  =  \frac{ - ( - 20) \binom{ + }{ - }  \sqrt{ {( - 20)}^{2} - 4 \times 1 \times 34 } }{2 \times 1}  \\  \:  \:  \:  \:  =  \frac{20 \binom{ + }{ - } \sqrt{400 - 136}  }{2}  \\  \:  \:  \:  \:  =  \frac{20 \binom{ + }{ - } \sqrt{264}  }{2}   \\  \\ so \: required \: roots \:   are -  \\  \\  \frac{20 -  \sqrt{264} }{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{20 +  \sqrt{264} }{2}

I HOPE YOU WILL MARK ME AS BRAINLIEST

Similar questions