If x+y+4=0 find the value of x^3+y^3-12xy+64
Answers
Answered by
12
Answer:
a³+b ³+c³
=(a+b+c)(a
2
+b
2
+c
2
−ab−bc−ca)+3abc
If a+b+c=0, then a
3
+b
3
+c
3
=3abc
Now, given x
3
+y
3
−12xy+64 and
x+y=−4
=>x+y+4=0
Here, a=x, b=y, c=4 and a+b+c=x+y+4=0
Therefore
x
3
+y
3
+64=3xy(4)
=12xyz
Now,
x
3
+y
3
+64−12xyz=12xyz−12xyz =0
Answered by
0
Step-by-step explanation:
x+y+4=0
So, x+y = 0-4
= -4
x^3+y^3-12xy+64
So, x³+y³+64 = 4×3xy
= 12xy
Now,
x^3+y^3+64-12xy = 12xy - 12xy
So, x^3+y^3-12xy+64 = 0 Ans.
Similar questions