if x -y=5 and xy=12 ,find the value of x²+y²
Answers
Answered by
0
Answer:
40
Step-by-step explanation:
The value of x^2+y^2x
2
+y
2
= 40
Step-by-step explanation:
The complete question:
If x + y = 8 and xy = 12, find the value of (x^2+y^2x
2
+y
2
).
Given,
x + y = 8 and xy = 12
To find, the value of x^2+y^2x
2
+y
2
= ?
∴ x + y = 8
Squaring both sides, we get
(x+y)^2=8^2(x+y)
2
=8
2
⇒ x^{2} +y^{2} +2xy=64x
2
+y
2
+2xy=64
Put xy = 12, we get
⇒ x^{2} +y^{2}x
2
+y
2
+ 2(12) = 64
⇒ x^{2} +y^{2}x
2
+y
2
+ 24 = 64
⇒ x^{2} +y^{2}x
2
+y
2
= 64 - 24 = 40
∴ x^2+y^2x
2
+y
2
= 40
Thus, the value of x^2+y^2x
2
+y
2
= 40
Similar questions