Math, asked by ppalak80, 2 months ago

if x -y=5 and xy=12 ,find the value of x²+y²​

Answers

Answered by singlabhavya17
0

Answer:

40

Step-by-step explanation:

The value of x^2+y^2x

2

+y

2

= 40

Step-by-step explanation:

The complete question:

If x + y = 8 and xy = 12, find the value of (x^2+y^2x

2

+y

2

).

Given,

x + y = 8 and xy = 12

To find, the value of x^2+y^2x

2

+y

2

= ?

∴ x + y = 8

Squaring both sides, we get

(x+y)^2=8^2(x+y)

2

=8

2

⇒ x^{2} +y^{2} +2xy=64x

2

+y

2

+2xy=64

Put xy = 12, we get

⇒ x^{2} +y^{2}x

2

+y

2

+ 2(12) = 64

⇒ x^{2} +y^{2}x

2

+y

2

+ 24 = 64

⇒ x^{2} +y^{2}x

2

+y

2

= 64 - 24 = 40

∴ x^2+y^2x

2

+y

2

= 40

Thus, the value of x^2+y^2x

2

+y

2

= 40

Similar questions