If x+y=5 then find value of x^3+y^3+15xy
Answers
Answered by
1
(x+y)3 = x3 + y3 + 3xsqy + 3xysq
125 = x3 + y3+ 3xy(x + y)
125 = x3 + y3+ 3xy(5)
125 = x3 + y3+ 15xy
x3 + y3+ 15xy - 125 = 0
x+y=5
cubing on both sides
(x+y)^3=125
x^3+y^3+3xy(x+y)=125
x^3+y^3+3xy(5)=125. (Since x+y=5)
x^3+y^3+15xy=125
Thus
x^3+y^3+15xy-125=0
125 = x3 + y3+ 3xy(x + y)
125 = x3 + y3+ 3xy(5)
125 = x3 + y3+ 15xy
x3 + y3+ 15xy - 125 = 0
x+y=5
cubing on both sides
(x+y)^3=125
x^3+y^3+3xy(x+y)=125
x^3+y^3+3xy(5)=125. (Since x+y=5)
x^3+y^3+15xy=125
Thus
x^3+y^3+15xy-125=0
Answered by
1
x^3+y^3+15xy
=(x+y)^3+3xy(x+y)+15xy
=(5)^3-3xy(5)+15xy [x+y=5]
=125
=(x+y)^3+3xy(x+y)+15xy
=(5)^3-3xy(5)+15xy [x+y=5]
=125
Similar questions
Social Sciences,
8 months ago
History,
8 months ago
Math,
8 months ago
Math,
1 year ago
Computer Science,
1 year ago