if x+y= 6 and x - y = 4 find xy
Hint:4xy=(x+y)^2 -(x-y)^2
Answers
Answered by
2
Hey
Given :-
x + y = 6 ..... (1)
x - y = 4 ..... (2)
eq (1) + (2)
2x = 10
x = 10/2
x = 5
substitute x=5 in eq (1)
5 + y = 6
y = 6 - 5
y = 1
As we know the x and y values
xy = 5*1 = 5
OR
4xy = (x+y)^2 - (x-y)^2
4xy = (6)^2 - (4)^2
4xy = 36 - 16
4xy = 20
xy = 20/4
xy = 5
Mukund132113211321:
how did u do tgat im amazed
Answered by
0
QUESTIONS:
If x + y = 6 & x - y = 4 , the find
(i) x² + y²
(ii) xy
GIVEN:
x + y = 6
x - y = 4
Hint: 4xy = (x + y)² - (x - y)²
SOLUTION:
Using the given hint
4xy = (x + y)² - (x - y)²
Substituting the value of x + y & x - y
→ 4xy = 6² - 4²
→ 4xy = 36 - 16
→ 4xy = 20
→ xy = 20/4
→ xy = 5
→ xy = 5
Finding x² + y²
Using
a² + b² = (a + b)² - 2ab
Similarly
x² + y² = (x + y)² - 2xy
Substituting the values of x + y & xy
→ x² + y² = 6² - 2(5)
→ x² + y² = 36 - 10
→ x² + y² = 26
→ x² + y² = 26
Hence, xy = 5 & x² + y² = 26
Similar questions